This publication is available at Army Knowledge Online (www.us.army.mil) and General Dennis J. Reimer Training and Doctrine Digital Library at (www.train.army.mil).
Commander’s Aircrew Training Program for Individual, Crew, and Collective Training

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>vii</td>
</tr>
<tr>
<td>SUMMARY OF CHANGES</td>
<td>ix</td>
</tr>
<tr>
<td>PART ONE AIRCREW TRAINING</td>
<td></td>
</tr>
<tr>
<td>Chapter 1 INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>Aviation Battle-Focused Training</td>
<td>1-3</td>
</tr>
<tr>
<td>FM 7-0 Implications for Aviation Units</td>
<td>1-5</td>
</tr>
<tr>
<td>Standardization Program (AR 34-4)</td>
<td>1-6</td>
</tr>
<tr>
<td>Combined Arms Training Strategy</td>
<td>1-7</td>
</tr>
<tr>
<td>Aviation Training References</td>
<td>1-8</td>
</tr>
<tr>
<td>Responsibilities</td>
<td>1-8</td>
</tr>
<tr>
<td>Senior Commander</td>
<td>1-8</td>
</tr>
<tr>
<td>Brigade Commander</td>
<td>1-8</td>
</tr>
<tr>
<td>Battalion Commander</td>
<td>1-10</td>
</tr>
<tr>
<td>Operations Staff Officer</td>
<td>1-10</td>
</tr>
<tr>
<td>Company/Troop Commander</td>
<td>1-10</td>
</tr>
<tr>
<td>Platoon Leader</td>
<td>1-11</td>
</tr>
<tr>
<td>Standardization Officer</td>
<td>1-11</td>
</tr>
<tr>
<td>Tactical Operations Officer</td>
<td>1-11</td>
</tr>
<tr>
<td>Maintenance Officer</td>
<td>1-11</td>
</tr>
<tr>
<td>Safety Officer</td>
<td>1-12</td>
</tr>
<tr>
<td>Flight Surgeon/Aviation Physician Assistant</td>
<td>1-12</td>
</tr>
<tr>
<td>Unit Trainer</td>
<td>1-12</td>
</tr>
<tr>
<td>Master Gunner</td>
<td>1-12</td>
</tr>
<tr>
<td>Pilot in Command</td>
<td>1-13</td>
</tr>
<tr>
<td>Individual Aviator</td>
<td>1-13</td>
</tr>
<tr>
<td>Nonrated Crewmember</td>
<td>1-13</td>
</tr>
</tbody>
</table>

Distribution Restriction: Approved for public release; distribution is unlimited.

This publication supersedes TC 1-210, 20 June 2006.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncrewmember</td>
<td>1-13</td>
</tr>
<tr>
<td>Integrating Individual, Crew, and Collective Training</td>
<td>1-13</td>
</tr>
<tr>
<td>Readiness</td>
<td>1-14</td>
</tr>
<tr>
<td>Readiness Reporting</td>
<td>1-14</td>
</tr>
<tr>
<td>Training to Sustain Proficiency</td>
<td>1-14</td>
</tr>
<tr>
<td>Protecting the Force</td>
<td>1-16</td>
</tr>
<tr>
<td>Leader Development</td>
<td>1-16</td>
</tr>
<tr>
<td>Commanders as Pilots in Command and Evaluators</td>
<td>1-16</td>
</tr>
<tr>
<td>Pilot in Command Requirements for Company Commanders</td>
<td>1-16</td>
</tr>
<tr>
<td>Pilot in Command Requirements for Aviation Warrant Officers with Skill</td>
<td>1-16</td>
</tr>
<tr>
<td>Qualification Identifiers in Valid Positions</td>
<td>1-17</td>
</tr>
<tr>
<td>Training Management</td>
<td>1-18</td>
</tr>
<tr>
<td>Training Planning Process</td>
<td>1-18</td>
</tr>
<tr>
<td>Resourcing</td>
<td>1-19</td>
</tr>
<tr>
<td>Training Aides, Devices, Simulators, and Simulations</td>
<td>1-19</td>
</tr>
<tr>
<td>Live-Virtual-Constructive Training Environments</td>
<td>1-19</td>
</tr>
<tr>
<td>IMPLEMENTATION GUIDANCE</td>
<td>2-1</td>
</tr>
<tr>
<td>Symbol and Word Distinction Symbol Usage</td>
<td>2-1</td>
</tr>
<tr>
<td>Word Distinctions</td>
<td>2-1</td>
</tr>
<tr>
<td>PART TWO INDIVIDUAL AND CREW TRAINING</td>
<td></td>
</tr>
<tr>
<td>AIRCREW TRAINING PROGRAM</td>
<td>3-1</td>
</tr>
<tr>
<td>Introduction</td>
<td>3-1</td>
</tr>
<tr>
<td>Aircrew Training Program Progressation</td>
<td>3-3</td>
</tr>
<tr>
<td>Flight Activity Categories</td>
<td>3-5</td>
</tr>
<tr>
<td>Operational and Nonoperational Flying Positions</td>
<td>3-6</td>
</tr>
<tr>
<td>Commander’s Evaluation</td>
<td>3-6</td>
</tr>
<tr>
<td>Readiness Level Progression</td>
<td>3-7</td>
</tr>
<tr>
<td>Commander’s Certification</td>
<td>3-12</td>
</tr>
<tr>
<td>Extensions, Waivers, and Suspensions</td>
<td>3-12</td>
</tr>
<tr>
<td>Aircrew Training Program Forms and Records</td>
<td>3-12</td>
</tr>
<tr>
<td>TRAINING REQUIREMENTS</td>
<td>4-1</td>
</tr>
<tr>
<td>Commander’s Task List</td>
<td>4-1</td>
</tr>
<tr>
<td>Task and Iteration Requirements for Primary, Additional, and Alternate</td>
<td>4-2</td>
</tr>
<tr>
<td>Aircraft</td>
<td>4-2</td>
</tr>
<tr>
<td>Task Iterations for Initial Designation</td>
<td>4-3</td>
</tr>
<tr>
<td>Task Iteration Considerations for Similar Aircraft</td>
<td>4-3</td>
</tr>
<tr>
<td>Flying-Hour Requirements</td>
<td>4-3</td>
</tr>
<tr>
<td>Aircraft Qualification</td>
<td>4-4</td>
</tr>
<tr>
<td>Aircrew Training Program Requirements</td>
<td>4-6</td>
</tr>
<tr>
<td>Additional Training Requirements</td>
<td>4-9</td>
</tr>
<tr>
<td>EVALUATIONS AND TESTS</td>
<td>5-1</td>
</tr>
<tr>
<td>Evaluations</td>
<td>5-1</td>
</tr>
<tr>
<td>Hands-On Performance Evaluations</td>
<td>5-2</td>
</tr>
<tr>
<td>Annual Proficiency and Readiness Test Requirements</td>
<td>5-3</td>
</tr>
<tr>
<td>COMPOSITE RISK MANAGEMENT</td>
<td>6-1</td>
</tr>
<tr>
<td>General</td>
<td>6-1</td>
</tr>
</tbody>
</table>
Contents

Composite Risk Management Concept ... 6-1
Responsibilities.. 6-3
Composite Risk Management Training ... 6-5
Composite Risk Management Process ... 6-5
Risk Assessment Tools .. 6-7

PART THREE COLLECTIVE TRAINING

Chapter 7 TRAINING THE UNIT ... 7-1
Army Force Generation ... 7-1
Supported and Supporting Unit Training 7-4
Aviation Maintenance ... 7-5
Maintenance Training ... 7-5
Maintenance Initiatives ... 7-5
Aviation Training Management .. 7-6
Training Process .. 7-7
Training Plans .. 7-8
Training Plan Process ... 7-9
Training Strategy .. 7-10
Near-Term Planning ... 7-10
Longe-Range Planning ... 7-10
Quarterly Training Calendar .. 7-10
Aircrew Training Program ... 7-10
Mission Essential Task List Task Sustainment 7-11
Platoon Collective Training ... 7-11
Company Collective Training ... 7-11
Battalion Collective Training ... 7-11
 Brigade Collective Training ... 7-12
 Gunnery Training ... 7-12
Individual Through Collective Training Integration 7-12
Aviator Professional Development ... 7-13
Aircrew Training Program Forms and Records 7-13

Chapter 8 COLLECTIVE TRAINING FACTORS 8-1
Collective Training and Unit Readiness 8-1
Evaluation of Collective Training ... 8-2
Collective Training .. 8-2
Combat Training Center Preparation .. 8-4
Training Simulations ... 8-5
Battle-Rostering ... 8-6
Attack/Reconnaissance Helicopter Collective Gunnery 8-6
Door Gunnery Collective Training .. 8-7
Integration of Additional Training Requirements 8-7
Night Vision Device Training .. 8-7
Aircrew Coordination Training-Enhanced 8-7

Chapter 9 FLYING-HOUR PROGRAM .. 9-1
Commander Responsibilities ... 9-1
Formulating a Unit Flying-Hour Program 9-1
Managing Resources ... 9-3
Continuous Assessments ... 9-4

Chapter 10 AVIATION TRAINING GUIDELINES FOR UNIT STATUS REPORTING 10-1
General ... 10-1
Assessing and Reporting Unit Proficiency in Mission Essential Tasks 10-1
Crewmember Status and Unit Status Relationship 10-2
Additional Training Considerations .. 10-3

Appendix A AIRCREW TRAINING RECORDS .. A-1
Appendix B TASK DEVELOPMENT .. B-1
Appendix C AIRCREW TRAINING PROGRAM STANDING OPERATING PROCEDURE. C-1
Appendix D AIRCREW TRAINING PROGRAM PROCESS FLOW CHARTS D-1
Appendix E COMMANDER AND CREWMEMBER AVIATION MEDICINE RESPONSIBILITIES. E-1
GLOSSARY .. Glossary-1
REFERENCES .. References-1
INDEX .. Index-1

Figures

Figure 1-1. Full spectrum operations (FM 3-0) .. 1-1
Figure 1-2. Aviation training strategy .. 1-2
Figure 1-3. Army training and leader development model 1-3
Figure 1-4. Battalion task crosswalk ... 1-4
Figure 1-5. Core mission essential task list ... 1-5
Figure 1-6. Army training strategy ... 1-7
Figure 1-7. Collective training .. 1-15
Figure 3-1. Combined arms training strategy assumptions/variables 3-2
Figure 3-2. Training gates ... 3-4
Figure 6-1. Composite risk management steps .. 6-2
Figure 6-2. Probability chart ... 6-7
Figure 6-3. Risk assessment matrix ... 6-8
Figure 7-1. Example of a heavy brigade combat team model 7-2
Figure 7-2. Example of a combat aviation brigade mode 7-3
Figure 7-3. Example of the current timeline for 6-month reset and 15-month operational dwell ... 7-4
Figure 7-4. Aviation training management .. 7-7
Figure 10-1. Collective training T-level ratings .. 10-2
Figure 10-2. Crewmember training T-level ratings ... 10-3
Figure 10-3. Minimum fill(s) requirements per aircraft 10-3
Figure A-1. Individual aircrew training folder labels A-1
Figure A-2. Individual aircrew training folder contents A-2
Figure A-3. Example of completed DA Form 7120-R A-6
Figure A-4. Example of completed DA Form 7120-1-R A-8
Figure A-5. Example of completed DA Form 7120-2-R A-9
Figure A-6. Example of completed DA Form 7120-3-R A-11
Figure A-7. Example of completed DA Form 7122-R .. A-15
Figure A-8. Example of completed DA Form 7122-R, Page 2 A-16
Figure A-9. Examples 1 through 4 of DA Form 7122-R .. A-17
Figure A-10. Examples 5 through 8 of DA Form 7122-R ... A-18
Figure A-11. Examples 9 through 12 of DA Form 7122-R .. A-19
Figure A-12. Example of completed DA Form 4507-R .. A-21
Figure A-13. Example of completed DA Form 4507-1-R ... A-22
Figure A-14. Example of completed DA Form 4507-2-R ... A-24
Figure B-1. Example of a task description .. B-3
Figure B-2. Example of night or night vision goggle considerations B-4
Figure B-3. Example of night vision system considerations .. B-4
Figure B-4. Format for a task ... B-5
Figure C-1. Aircrew training program standing operating procedure requirements C-3
Figure C-2. Example of standing operating procedure—role of subordinate commanders ... C-3
Figure C-3. Example of standing operating procedure—commander’s intent C-4
Figure C-4. Example of standing operating procedure—crew qualification and selection program ... C-5
Figure C-5. Example of standing operating procedure—mission brief/approval training certification program ... C-6
Figure C-6. Example of standing operating procedure—standardization committee responsibilities ... C-7
Figure C-7. Example of standing operating procedure—aircrew information reading file ... C-7
Figure C-8. Example of standing operating procedure—aviator orientation training C-8
Figure C-9. Example of standing operating procedure—PC selection and designation C-8
Figure C-10. Example of standing operating procedure—no-notice evaluation program .. C-9
Figure C-11. Example of standing operating procedure—aircraft survivability equipment/computer-based aircraft survivability equipment training/threat training program ... C-9
Figure C-12. Example of standing operating procedure—simulator training C-10
Figure C-13. Example of standing operating procedure—night/night vision goggle/night vision system training ... C-11
Figure C-14. Example of standing operating procedure—aerial gunnery training C-12
Figure C-15. Example of standing operating procedure—environmental training C-13
Figure C-16. Example of standing operating procedure—air mission commander training program .. C-14
Figure C-17. Example of standing operating procedure—multiship operations training C-15
Figure C-18. Example of standing operating procedure—combat identification training .. C-16
Figure C-19. Example of standing operating procedure—academic training C-16
Figure C-20. Example of standing operating procedure—chemical, biological, radiological, and nuclear training and evaluation ... C-17
Figure C-21. Example of standing operating procedure—aviation life support equipment training .. C-17
Figure C-22. Example of standing operating procedure—instrument flight training C-18
Figure D-1. Integration into unit ... D-2
Figure D-2. Night vision goggle integration/training D-3
Figure D-3. Failed standardization evaluation .. D-4
Figure D-4. Refresher training .. D-5
Figure D-5. Annual proficiency and readiness test period D-6
Figure D-6. Postaccident evaluation .. D-7
Preface

Currently, Aviation Soldiers are supporting an Army that is serving a nation at war. Despite some unique challenges, Aviation Soldiers and their units have performed splendidly, often in strange and difficult environments. They operate at high altitudes, in dust, and in adverse weather. They fight against an adaptive and relatively unknown adversary. Every indication is that this operating environment is part of a continuous global conflict. Army Aviation units continuously demonstrate the necessity for combined arms operations through the dominance of air maneuver in support of ground forces. This dominance generates decisive combat power in the present force and will continue to be a key component of Army operations for the foreseeable future.

The Army’s leadership completed a holistic review of Army Aviation and its role on the joint battlefield in 2003. Changes were made, and will continue to adapt, across the spectrum of Doctrine, Organization, Training, Materiel, Leadership, Education, Personnel, and Facilities to optimize Army Aviation’s role in warfighting. Leaders and trainers at institutional and unit levels will focus on the future, while effectively leading and managing battle-focused training.

Training for warfighting is our first priority during peace and war. Warfighting readiness is derived from tactical and technical competence and confidence in individual and unit skills. Competence relates to the ability to fight our doctrine through tactical and technical execution. Confidence is the individual and collective belief that we can do all things better than our adversary.

This TC is the keystone publication for the Army ATM series of publications and establishes the requirements for a unit ATP. Based on the battle-focused training principles outlined in FM 7-0 and the Combined Arms Training Strategy (CATS), this TC will help commanders at all levels develop, manage, and administer a comprehensive ATP. The ATP is an assembly of training requirements organized to fulfill the broad, overall training goals of aviation commanders supervising rated, nonrated, and noncrewmember Soldiers on their staff. Rated crewmembers are defined in AR 600-105; nonrated crewmembers and noncrewmembers are defined in AR 600-106.

This TC eliminates FAC 3 authorizations in modification table of organization and equipment battalions and below for RCMs and prescribes the responsibilities of those tasked with implementing individual, crew, and collective training. While acknowledging the required involvement of commanders during all phases of training and evaluation; it emphasizes proficiency and PC requirements for all aviators but particularly company commanders, tracked aviation warrant officers, and junior officers.

As stated in AR 95-1, the ATP will be in accordance with this TC and the appropriate ATMs. If a conflict exists between this publication and the individual aircraft ATMs, this publication takes precedence. As applicable, all personnel are reminded to refer to other applicable regulations, supplements, circulars, and so forth for guidance designed specifically for a particular unit, region, or service.

As appropriate, all personnel are reminded to further refer to appropriate Army command supplements to regulations, circulars, and manuals. This TC applies to the Active Army, Army National Guard (ARNG)/Army National Guard of the United States (ARNGUS), and United States Army Reserve (USAR) unless otherwise stated.

This TC contains three parts—Aircrew Training, Individual and Crew Training, and Collective Training. Part One introduces this TC. It discusses roles and responsibilities and presents a broad overview of individual and collective training integration. Part One also defines symbol usage and word distinctions. Part Two addresses individual and crew training responsibilities, requirements, and procedures. It establishes the requirements for the unit ATP. This section is prescriptive in nature and requirements must be completed, at a minimum, as outlined. Where applicable, references may be made to appendixes contained in this training circular. When Part Two references an appendix, procedures or requirements in the referenced appendix become mandatory. Failure to comply with directives and requirements must be processed according to AR 95-1. Part Three addresses unit collective training. There are no mandatory training requirements established in Part Three, although commanders must ensure compliance with applicable Army regulations where referenced (for example, AR 220-1). The guidance contained in Part Three assists implementers and commanders in
determining collective training requirements, structuring the training, and implementing collective METL battle-focused training. Complying with the procedures in Part Three is strongly encouraged. Appendix D contains process flow charts to help aviation Soldiers and their commanders understand the flow of decisions and actions for specific instances.

Historically, this document served primarily as a guide for the standardization section of the aviation unit for the administration of the commander’s ATP; the new format includes collective training and composite risk management (CRM) sections that act as a guide for the operations staff officer (S-3) section of the aviation unit to enhance the commander’s overall ATP.

The proponent for this publication is United States Army Training and Doctrine Command (TRADOC). Send comments and recommendations on Department of the Army (DA) Form 2028 (Recommended Changes to Publications and Blank Forms) through the aviation unit commander to Commander, USAACE, ATTN: ATZQ-TDT-F, Fort Rucker, Alabama 36362-5000, or direct e-mail questions to ruck.ATZQ-TDT-F@conus.army.mil.

This publication has been reviewed for operations security considerations.
SUMMARY of CHANGES

TC 3-04.11
Commander’s Aircrew Training Program for Individual, Crew, and Collective Training

This revision, dated 19 November 2009.

- Incorporates previous army aviation branch messages and guidance and changes specific verbiage where necessary to clarify current of updated requirements.

- Changes title to Training Circular (TC) 3-04.11, Commander’s Aircrew Training Program for Individual, Crew, and Collective Training, to emphasize the regulatory nature of the document specified in Army regulation (AR) 95-1, paragraph 4-1.

- Adds Aviation Physician Assistant (APA) to the Flight Surgeon (FS) description and duties. Expands additional duties for the FS/APA within the aviation unit (paragraph 1-38).

- Specifies that the commander designates a door gunner nonrated crewmember (NCM) standardization instructor (SI) to administer the door gunnery program in accordance with (IAW) Field Manual (FM) 3-04.140 (paragraph 1-40).

- Adds the Simulator Hour Program (SHP) as a reportable item in the future (paragraph 1-49).

- Adds a condition in which the colonel (O-6) may grant an extension for pilot in command (PC) for company commanders (paragraph 1-64).

- Allows the first O-6 in the chain of command 30-day extension authority for PC for company commanders (paragraph 1-67).

- Adds an exclusion for days lost due to list for PC for Warrant Officers with Skill Identifiers (paragraph 1-70).

- Redefines definitions for night vision system (NVS), night vision goggle (NVG), and night vision device (NVD) (paragraph 2-2).

- Adds Aircraft Identification Conventions giving definitions for Class/Type, Modified Mission, Model, and Series (paragraph 2-4).

- Specifies that the brigade level commander designates flight activity category (FAC) level positions based on the modified table of organization and equipment (MTOE)/table of distribution and allowances (TDA) (paragraph 3-17).

- Allows brigade level commanders to designate positions FAC 1, 2, or 3 when crewmembers are assigned to excess positions based on available resources and constraints (paragraph 3-18).

- Units that do not have mission essential task list (METL) or MTOE that supports tactical deployment will designate unit positions as FAC 2 (paragraph 3-22).

- Requires an instrument evaluation for aviators designated FAC 3 within 90 days who have not received an instrument evaluation within the preceding 12 months (paragraph 3-21).

- Includes requirements for aviators assigned to operational and nonoperational flying positions (paragraph 3-22).
Summary of Changes

- Redefines crewmember’s annual proficiency and readiness test (APART) requirements during commander’s evaluation (records review) (paragraph 3-29).

- Adds requirement for initial entry rotary wing (IERW) and Flight School Twenty-One (FSXXI) graduates to have an APART evaluation within preceding 12 months if designating other than readiness level (RL) 3 based on a proficiency flight evaluation (PFE) (paragraph 3-29).

- Changes past 12 months to aircrew training program (ATP) year (paragraph 3-32).

- Adds mission type and design (paragraph 3-34).

- Adds 4000 series tasks and does not allow NVG RL 1 while D/N RL 2 or 3 (paragraph 3-36).

- Adds an exclusion for days lost for Army Guard Reserve (AGR) or Reserve Component (RC) units (paragraph 3-37).

- Changes section title from Refresher to Individual (before paragraph 3-42).

- Adds 4000 series tasks (paragraph 3-42 Note).

- Expands the definition of RL 3 for qualification, deficiency, or refresher (paragraph 3-43).

- Expands the definition for RL 2 (paragraph 3-47).

- Changes implementers to commander (paragraph 3-49).

- Allows for engineering test flight pilots to complete APART and flying hour requirements in category (paragraph 3-50).

- Adds 1000 series task requirement from the appropriate aircrew training manual (ATM) (paragraph 3-51).

- Requires Department of the Army civilian (DAC) aviators teaching programs of instruction (POIs) at United States Army Aviation Center of Excellence (USAACE) to accomplish requirements specified in the ATM (paragraph 3-53).

- Adds clarification for extensions, waivers, and suspensions (paragraph 3-55 to 3-57).

- Adds experimental pilot requirement (paragraph 3-60).

- Expands definition of multiple aircraft designations (paragraph 4-2).

- Adds definition of performance and technical tasks (paragraph 4-9).

- Expands task and iteration requirements for primary, additional and alternate aircraft (paragraph 4-11).

- Clarifies the adjustment of flying hours when redesignating FAC levels (paragraph 4-19).

- Adds aircraft nonavailability due to deployment/redeployment and aircraft preset and reset of less than 50 percent (paragraph 4-20).

- Introduces the term functional check pilot (FCP) and functional test pilot evaluator into the ATP (paragraph 4-8).

- Addition of paragraph 4-28 and Note.
o Addition of flight medic (paragraph 4-30).

o Expansion and addition of the NVG training section and removed Appendix B (paragraphs 4-41 to 4-52).

o Added new paragraph 4-53 under Additional Requirements.

o Removed requirement to make a record entry on DA Form 7122-R (Crew Member Training Record) (paragraph 4-55).

o Added Aircrew Coordination Training-Enhanced (ACT-E) section and removed Appendix A (paragraphs 4-60 to 4-69).

o Expanded Aviation Mission Survivability Training (paragraphs 4-71 and 4-72).

o Removed rated crewmember (RCM) computer-based aircraft survivability equipment training (CBAT); NCM CBAT; and Aircraft, Crew, and Collective Simulator Aircraft Survivability Equipment Requirements sections. Sections incorporated into paragraphs 4-71 and 4-72.

o Added Personnel Recovery (PR) Training section (paragraph 4-77).

o Detailed chemical, biological, radiological, and nuclear (CBRN) training and waiver authorities using the appropriate ATM, FM 3-05.132, and AR 95-1 respectively (paragraph 4-88).

o Allows the first 0-6 in the chain of command to evaluate his unit’s mission and determine if CBRN training is required (paragraph 4-90).

o Hypobaric refresher training required every 5 years (paragraph 4-97).

o Specifies trainer/evaluator requirements (paragraphs 5-5 to 5-7).

o Removes the ability for an instructor pilot (IP)/standardization instructor pilot (SP) to conduct an instrument evaluation to align with AR 95-1 (paragraph 5-12).

o Added Instrument Flight Evaluation in approved simulator with commander’s approval (paragraph 5-13).

o Changed aircraft group to primary, additional and alternate aircraft (paragraph 5-26).

o Aligns with AR 95-1 to ensure aviator’s who have not completed an instrument evaluation in the preceding 24 months due to a waiver are redesignated RL 3 (paragraph 5-29).

o Redefined maintenance examiner (ME) evaluation IAW AR 95-1 and removed Note (paragraph 5-30).

o Appendix A and B removed.

o Figure 10-3 Minimum fill(s) chart updated adding medical evacuation (MEDEVAC) configured aircraft and Flight Medic.
Summary of Changes

- Appendix C redesignated Appendix A as well as updated DA Forms 7120-R (Commander’s Task List) and 4507-R (Crew Member Grade Slip) and examples to include technical task iterations and instructions when authorizing similar aircraft.

- Change in criteria to initiate a new DA Form 7120-R and additional Notes (redesignated Appendix A, paragraph A-5).

- Redesignate Appendix D to Appendix B.

- Redesignate Appendix E to Appendix C.

- Changed Figure C-1, standing operating procedure (SOP) requirements.

- Appendix C updated TOC to align with AR 95-10 requirements.

- Redesignate Appendix F to Appendix D.

- Added Appendix E, Commander and Crewmember Aviation Medicine Responsibilities.

- Added AR 95-20 to References Section.
PART ONE

Aircrew Training

Chapter 1

Introduction

How we will FIGHT. Success in battle does not happen by accident; it is a direct result of tough, realistic, and challenging training.

FM 7-0, Training the Force

1-1. The Army’s future force will be a knowledge-based component of a joint, interagency, intergovernmental, and multinational (JIIM) force capable of assured access and decisive, sustained operations against any adversary. The full spectrum operations of this force will involve fundamental change that affects the entire Army—the way it fights, the way it organizes, the way it equips, the way it maintains, and the way it trains. Aviation forces will be integral to any JIIM force, just as they are to any current combined or joint force; performing the Army warfighting functions for the land component commander. Aviation forces significantly enhance the Army’s ability to be a critical component of the joint team, conducting offensive, defensive, stability, and civil support operations in a joint and expeditionary context across the spectrum of conflict (figure 1-1).

Figure 1-1. Full spectrum operations (FM 3-0)
1-2. Combat operations have proven again that Army Aviation crews are fully fledged members of the combined arms team. Throughout air movements, air assaults, reconnaissance, and attack helicopter operations; Army Aviation provides the land component commander speed, agility, flexibility, and lethality—often under diverse and difficult conditions—throughout the fight.

1-3. Ongoing deployments and combat operations provide keen insights into the broad range of missions and requirements. The Army is fighting in a distributed manner, on a noncontiguous battlefield, with smaller, more effective units, and at an increased operating tempo. These units incorporate joint and combined arms capabilities at the lowest possible level and leaders must emphasize the development of junior leaders. This requires aviation commanders and their subordinate leaders to be well versed in battle tasks across the six Army warfighting functions—movement and maneuver, fires, intelligence, sustainment, command and control (C2), and protection. When the seventh element of leadership is combined they form the elements of combat power.

1-4. Aviation units and aircrews are continually faced with operational challenges requiring individual, crew, and unit proficiencies to operate in a very complex operating environment and sometimes unfamiliar fighting conditions. It is not uncommon for an aircrew to perform the duties normally associated with higher leaders in air-ground integrated operations. The requirement to “train as we fight” is highlighted by these operational realities (figure 1-2).
AVIATION BATTLE-FOCUSED TRAINING

1-5. FM 7-0 is the Army’s capstone training doctrine and is applicable to all units, at all levels, and to all components. It provides the training and leader development methodology that forms the foundation for developing competent and confident soldiers and well trained units that will win decisively in any environment.

1-6. Successful aviation training, based on these doctrinal guidelines provides aviation forces with the capabilities required to fight and win across the entire spectrum of operations. The impact of operating in the third dimension with large numbers of complex systems simultaneously performing the warfighting functions requires constant focus and attention. Thus, aviation unit collective proficiency can best be accomplished by joint and combined arms battle focused training. Understanding how to conduct tough and realistic training at every echelon sets the groundwork for successful multiechelon, JIIM operations.

1-7. There are three domains that encompass the Army training and leader development model—institutional, self development, and operational domains (figure 1-3). The operational domain is an extension of institutional and self development and provides the foundation for our field commanders to build successful training strategies. Operational missions and training events improve leader skills and judgment while increasing unit collective proficiency through realistic and challenging training and real-time, operational missions.

Figure 1-3. Army training and leader development model
1-8. Battle focus is a concept used to derive peacetime training requirements from wartime missions. This principal concept is the foundation for constructing successful training strategies for the operational domain. Commanders maintain battle focus when allocating resources for training based on wartime mission requirements. The use of battle focus in conjunction with the METL enables commanders to structure a training program that copes with nonmission related requirements while focusing on mission essential training activities. Battle focus recognizes that a unit may not attain proficiency to standard on every task possible due to time or other resource constraints. However, commanders can achieve a successful go-to-war training program by narrowing the training focus to the tasks that are essential to wartime mission accomplishment (figure 1-4).

Figure 1-4. Battalion task crosswalk

1-9. The Army is currently undergoing a process of determining the core mission essential task list (CMETL) for all units brigade and above (figure 1-5, page 1-5). The CMETL for units will be comprised of core competency mission essential tasks (CCMET) and general mission essential task (GMET). The CCMET are the collective tasks that are specific to the type of unit and its table of organization and equipment (TOE) mission. These are aviation related tasks that are common across all similar aviation units. The GMET are collective tasks that are applicable to all units, regardless of type, in full spectrum operations in support of Army Force Generation (ARFORGEN). There also may be directed METL by the higher headquarters based on the likely theater and type of operation. The chart below shows the CCMET for combat aviation brigades (CABs). CCMET has also been developed for the theater aviation command, theater aviation brigade, theater airfield operations group, and the theater aviation sustainment maintenance group.
1-10. The combined arms task force commander, together with the subordinate aviation unit commanders, must develop and resource battle focused aviation unit training programs in concert with the training plans of the joint and combined arms team. Aviation units must be trained to fight collectively, with supported and supporting units in joint and combined arms environments. Likewise, to efficiently support or be supported by aviation forces, nonaviation forces need the requisite training. Liaison is just as important in developing joint and combined arms training as it is in integrating the air-ground scheme of maneuver. The aviation commander must participate in mission planning from the start to ensure proper aviation support to the ground commander and integration into his scheme of maneuver. This interface provides the nonaviation commander exposure to training and support requirements for his unit, enhances team building, and promotes understanding of unit capabilities within the task force. The brigade aviation element is a critical asset in the process of integrating and synchronizing training to maximize combat effects. The Army’s training program and the system of quarterly training briefs (QTBs) should be used as a vehicle for resourcing support, mutual understanding, leader development and mission accomplishment.

FM 7-0 IMPLICATIONS FOR AVIATION UNITS

1-11. The “Principles of Training” established in FM 7-0 applies to all units, including aviation units.

1-12. “Train to sustain proficiency,” or in other words, sustain proficiency within the “band of excellence” applies to all units. Aviation commanders must include aircraft maintenance in their band of excellence. The commander’s challenge comes with the often competing demands of keeping maintenance within the band while sustaining training excellence. Individual, crew, and collective proficiency increases during surges of aviation training, such as field training exercises (FTXs), Army training and evaluation program (ARTEP) assessments, and Combat Training Center (CTC) rotations. However, during these same periods of high training intensity, aircraft maintenance operational readiness (OR) rates will gradually decrease. Conversely, as training intensity slows, aircraft maintenance OR rate should increase.

1-13. Well trained units—with well maintained equipment—are safe units. One way to ensure that both training and aircraft maintenance remain within the band of excellence is to ensure that aviation units properly plan, resource, and execute necessary recovery periods. This recovery period must be captured on the short and near-term training plans. It is time during which flight operations will focus on attaining...
needed proficiency in individual and crew skills, while simultaneously concentrating on aircraft maintenance. During periods of intense training, aircraft accumulate deferred maintenance deficiencies. Maintenance posture may be low within the band of excellence—if not below the band of excellence—at the conclusion of a major training exercise or period of sustained gunnery training. The commander’s goal is to coordinate training and maintenance so that both remain within the band of excellence. If one or the other dips below the band, commanders must adjust their training/maintenance program to ensure the low component quickly returns to within the band of excellence.

1-14. Another implication of FM 7-0 that challenges aviation commanders is implementing the three-cycle time management system while aviation units simultaneously support the division through full spectrum operations.

1-15. Most divisional ground brigades plan their training using the green-amber-red time management system described in FM 7-0—green (prime training time), amber (mission), and red (administrative support). However, most CABs only have one battalion of each type of aircraft. Aviation resources are normally not enough to support all three periods of the system sufficiently to maintain a continuous tempo. Since aviation is intricately woven into the fabric of the combined arms team, ground brigades will always require the integration of aviation units into their green cycles to “train as they fight.” It is often difficult to have the entire aviation battalion following the green-amber-red time management cycle since each of the division’s ground brigades will rotate through the green-amber-red cycle. There will always be a brigade in the green cycle. Within a division with more ground brigades than assault companies, time management is difficult for aviation units to apply. Aviation commanders may have to modify this time management system to find a way to implement their training plans.

1-16. For units with two same type companies, it may be possible for aviation units to operate internally on a two-period system—green (prime training time) and red (administrative support) cycles. This allows the battalion commander to protect one company’s green training cycle. The other company performs the functions of the mission and administrative support cycles. For units with three or more of the same type companies, individual companies can rotate through the three period (green-amber-red) time management system.

1-17. In either case, rotating individual companies through the green-amber-red cycle poses a challenge for the battalion staff and support elements within the battalion, as those one-of-a-kind planning and support functions are required to support the company that is in the green cycle. Obviously, these staff and support personnel cannot be in green cycle perpetually. However, this also provides an opportunity for the development of various second in commands and junior leaders as they take charge in the absence of their superiors. For example, the assistant S-3, the “night crew,” junior staff section, platoon leaders, noncommissioned officers (NCOs), and others may act as primary leaders during given green cycles.

1-18. Aviation units must have a green training cycle to sustain proficiency. Additionally, during their green cycles, aviation units will need external resources from other divisional units to train. Aviation units require combined arms training with elements such as an infantry platoon or artillery section. This should be a training event resource and not part of a separate tasking for mission support from the infantry or artillery. Division training cycles should be used in conjunction with supported and supporting units to accomplish collective training of their METL.

STANDARDIZATION PROGRAM (AR 34-4)

1-19. The fielding of modern aircraft such as the attack helicopter (AH)-64D, observation helicopter (OH)-58D (R), cargo helicopter (CH)-47F, and utility helicopter (UH)-60M, while exponentially increasing the warfighting capabilities of aviation forces, creates diverse operational and training challenges. These increased capabilities require individual and crew proficiencies in very complex mission equipment packages, sometimes compounded by harsh flight environments. An ATP that focuses on aviator currency rather than proficiency will no longer satisfy aviation readiness requirements, and will be a detriment to training and safety. The objectives of a standardization program are the improvement and sustainment of proficiency and readiness among Soldiers and units throughout the Army. Standardization is accomplished through the universal application of approved practices, procedures and standards.
1-20. The aviation commander is responsible for the unit's standardization program. The aviation commander must include standardization throughout the overall training strategy. The commander's primary standardization staff members include subordinate commanders, unit standardization officers, unit tactical operations officers—master gunners and nonrated instructors. Standardization must be implemented in all training tasks. Implementers must remember that standardization is not an end in itself. Standardization enables units of any size—crews, multiple-aircraft formations, teams, squads, companies, or brigades—to readily function together to accomplish the warfighting combined arms mission. (AR 34-4 describes the Army standardization program in further detail.)

COMBINED ARMS TRAINING STRATEGY

1-21. The Army develops training strategies that are designed to achieve and sustain unit readiness. According to FM 7-0, doctrinal templates of training events, event frequency, and associated resources are what commander’s use in developing a unit training strategy. The events listed in the appropriate CATS are the building blocks of the commander’s training plan, the status of which should be briefed in the QTBs (figure 1-6).

<table>
<thead>
<tr>
<th>Cold War</th>
<th>“IraqFORGEN”</th>
<th>ARFORGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Cold War / General Defensive Positions – Single Service Mentality</td>
<td>➢ Focuses on current AORs</td>
<td>➢ JIM forces with expeditionary mindset</td>
</tr>
<tr>
<td>➢ Offensive/Defensive Operations</td>
<td>➢ Counter-insurgency operations</td>
<td>➢ Full spectrum operations</td>
</tr>
<tr>
<td>➢ Unit TOE based</td>
<td>➢ 15-month dwell, 6 month Reset</td>
<td>➢ Modular focus</td>
</tr>
<tr>
<td>➢ 2 year - sustainment training cycle</td>
<td>➢ Trains directed tasks</td>
<td>➢ 3 year – Reset/Train/Ready phases</td>
</tr>
<tr>
<td>➢ Threat based</td>
<td></td>
<td>➢ Capabilities based</td>
</tr>
<tr>
<td>➢ STRAC dependent</td>
<td></td>
<td>➢ Drives STRAC</td>
</tr>
<tr>
<td>➢ CATS events not linked to readiness reporting</td>
<td></td>
<td>➢ Critical CATS training events drive readiness reporting</td>
</tr>
<tr>
<td>➢ No core competencies identified</td>
<td></td>
<td>➢ Train core competencies</td>
</tr>
</tbody>
</table>

OBJECTIVE:
- CATS centered around meeting CMETL (& DMETL) training requirements.
- A realistic training strategy that reflects the “real world” (constrained) training environment in terms of time & resources.
- Not a menu of events but rather a realistic training strategy based on the ARFORGEN model/templates.
- Holistic training strategy that integrates horizontally and vertically an entire brigade, its battalions, and companies training plan/plans.
- Accurately identifies TADSS, ranges, facilities, and ammunition for each training event.
- DTMS will be the digital repository where all current CATS and supporting collective tasks are available.

Figure 1-6. Army training strategy

1-22. Army aviation CATS include a crosswalk of individual, crew, and collective flight tasks that are required to maintain a proficient level of readiness. Aviation CATS are linked to readiness via AR 220-1 and to resourcing via the Army’s flying-hour program (FHP)/SHP. Commanders must maximize the use of training aids, devices, simulators, and simulations (TADSS) to gain the most effective training outcome from available time and resources. The CATS are applicable to all active and reserve forces.
AVIATION TRAINING REFERENCES

1-23. Aviation has the most complete library of training documents of any branch. This starts in the regulatory arena with AR 95-1 and works down to the individual/crew level with our Commander’s Guide and the aircraft specific ATM. We also have our gunnery program in FM 3-04.140 and the associated collective tasks in the unit tasks lists (UTLs) and the 15-series Soldier training publications. A new addition to our training “tool box” is ACT-E. It is an interactive multimedia product that allows commanders to embed their aviation training and safety philosophy into each aviator and ensure all understand the aspects of CRM.

1-24. Integration of lessons learned from training and ongoing operations provide a critical tool that allows us to enhance training based on current trends and the operational environment. Successful integration of lessons learned depends on two things: submission of observations, insights, and lessons from the field and consideration of lessons when developing unit training strategies. The aviation toolbox uses https://www.usaace.army.smil.mil as our means of accomplishing both processes.

RESPONSIBILITIES

Training execution focuses leaders on the art of leadership to develop trust, will, and teamwork under varying conditions—intangibles that must be developed to win decisively in combat. Leaders integrate this science and art to identify the right tasks, conditions, and standards in training, foster unit will and spirit, and then adapt to the battlefield to win decisively.

FM 7-0, Training the Force

SENIOR COMMANDER

1-25. Army aviation forces routinely conduct the warfighting functions in missions as members of combined arms teams and joint tasks forces. These commanders have the overall responsibility for resourcing and conducting appropriate live and virtual training. Aviation training responsibilities include insuring that units fighting with aviation forces have the requisite training and equipment to support or be supported by aviation forces. At every level, commanders must assess their subordinates, and provide them goal-oriented self development objectives.

BRIGADE COMMANDER

1-26. The brigade commander is responsible for the following:

- Setting the standard personally and professionally—in and out of the cockpit as the senior trainer and aviator in the brigade.
- Planning, integrating, and providing guidance and resources for battalion training (live and virtual training).
- Training battalion commanders and evaluating companies.
- Brigade safety and standardization programs and the ATP.
- Supporting the division or corps commander's combined arms training goals and wartime mission essential tasks.
- Integrating aviation into the entire spectrum of operations in the division or corps battle space.
- Training subordinate leaders such as S-3s, SPs, IPs, instrument examiners (IEs), MEs, SIs, flight instructors (FIs), and unit trainers (UTs) to implement the ATP.
1-27. State Army aviation officers (SAAOs) serve as the principal aviation staff officer to their respective Adjutant General in all matters concerning ARNG aviation. The SAAO is also responsible for the following:

- Establishing and overseeing (supervising) the state/territory ARNG aviation program, including aviation safety, aviation medicine program, maintenance, standardization, operations, and training.
- Providing guidance on aviation matters to all aviation and unit/facility commanders.
- Coordinating use of ARNG aviation assets by various organizations within the state/territory.
- Supervising (as the full-time support [FTS] SAAO) Army Aviation Support Facility (AASF), Army Aviation Flight Activity, Limited Army Aviation Support Facility, and Army Aviation Operating Facility supervisors within the state/territory.
- Serves as Chair of the State/Territory Standardization Committee.

1-28. Eastern ARNG Aviation Training Site (EAATS), Western ARNG Aviation Training Site (WAATS), High-Altitude ARNG Aviation Training Site, and Fixed-Wing ARNG Aviation Training Site commanders are responsible for the following:

- Commanding a centralized ARNG aviation training base.
- Supervising, developing and conducting approved POIs for National Guard Bureau (NGB)-directed courses.
- Managing and operating flight simulators in support of both formal POI and other training requirements as directed by Commander, NGB.

1-29. Aviation Facility, Activity, and Aviation Classification and Repair Activity Depot/Theater Aviation Sustainment Maintenance Group commanders are responsible for the following:

- Commands ARNG FTS personnel and coordinates matters concerning the operations and use of ARNG aircraft, including safety, aircraft maintenance, flight operations, standardization, FHP, and the aircrew flight training period portion of the ATP with coordination of the unit commanders.
- Coordinates support of training requirements with commanders of aviation units and elements with aircraft assigned to the facility.
- Supports individual aviators and crewmembers so they may attain and maintain readiness, proficiency and currency IAW TC 3-04.11 and the appropriate ATM(s).
- Supervises individual crewmember training.
- Advises and assists commanders concerning the use of Army aircraft, and their responsibilities for aviation personnel, equipment, standardization, safety, training and accident prevention programs.
- Maintains ATP records for crewmembers operating from their Facilities. They may sign DA Form 759 (Individual Flight Record and Flight Certificate-Army) closeout when authorized in writing by the respective unit commander; ensuring that all FTS personnel have a commander’s task list (CTL) completed for each facility designated aircraft.
- Allocates and schedules aviation assets in support of the unit’s ATP.
- Signs the DA Form 4186 (Medical Recommendation for Flying Duty) for the commander only when authorized in writing, initiating a DA Form 4186, when notified by a crewmember or upon determination of a crewmember’s medical limitation. A copy of the DA Form 4186 will be furnished to the individual, medical section, unit commander, and flight operations.
- Ensures that each crewmember has a current and valid aviation service order or flying status order before performing crewmember duties.
- Ensures that appropriate FTS personnel are present at the AASF to conduct and monitor flight operations and provide flight following during normal duty hours and emergencies.
BATTALION COMMANDER

1-30. Battalion commanders are responsible for the following:
 • Fights and leads, normally, from their designated aircraft.
 • Maintain a high level of proficiency in the aircraft and should be qualified PCs.
 • Executing the ATP as the primary training manager for the battalion.
 • Have administrative authority according to AR 95-1.
 • Primary trainer for the air mission commanders (AMCs) within the battalion.
 • Training company commanders and evaluating platoons.
 • Training and integrating the company into combined arms training.
 • Participating in the subordinate company’s training development process and ensure they utilize the live and virtual resources available to maximize their effectiveness.

 Note. Battalion commanders must understand and use subordinate leaders to support the execution of the standardization program—in synchronization with the ATP.

OPERATIONS STAFF OFFICER

1-31. The S-3 is responsible for the following:
 • Operations and training as the commander's principal staff officer.
 • Determining and allocating training and mission resources, planning and conducting training inspections, and compiling training records.
 • Maintaining a high level of proficiency in the aircraft and should be a pilot in command (PC).
 • Identifying training requirements to prepare and carry out training programs.
 • Primary assistant to the commander in executing the ATP.

COMPANY/TROOP COMMANDER

1-32. The company/troop commander is responsible for the following:
 • Integrating the company/troop into the combined arms fight and the management of the company’s ATP.
 • Being highly proficient as an aviation leader and a PC.
 • An administrative authority according to AR 95-1, AR 600-105, and AR 600-106 as the commander of the ATP.
 • Integrating the platoons and executing company training.
 • Training platoon leaders and AMCs.
 • Ensuring that soldiers and aircrews are properly trained at the individual, crew, and unit collective levels.
 • Will be a PC (paragraph 1-60).

 Note. The platoon leaders, IPs, UTs, and PCs assist the commander in ensuring crews are properly trained.
PLATOON LEADER
1-33. The platoon leader is responsible for the following:
- Crew training. (Unit IPs assist the platoon leaders in ensuring crews are properly trained.)
- Ensuring their aircrews are proficient in tactics, techniques, and procedures (TTP) outlined in the appropriate FMs and ATM.
- Developing proficiency in the aircraft and to attain PC status. This is also the entry level aviation leader position for gaining a basic understanding of aviation maintenance management and maintenance training requirements.

Note. Platoon leaders are at a critical point in their aviation careers. Their challenge is to become proficient aviators and technically and tactically proficient aviation leaders.

Note. Platoon sergeants and maintenance test pilots play a key role in the professional development of a platoon leader’s aviation maintenance expertise.

STANDARDIZATION OFFICER
1-34. The brigade/battalion/company standardization officers assist the commander in developing and executing the unit ATP. SPs, IPs, FIs, and nonrated crewmember SIs are responsible for the following:
- Providing quality control for the ATP via the commander’s standardization program.
- Serving as the primary technical and tactical experts for the standardization program.
- Providing expertise on unit individual, crew, and collective training to the commander.

Note. SPs and IPs will be PC at all levels.

TACTICAL OPERATIONS OFFICER
1-35. Tactical operations (TACOPS) officers are responsible for the following:
- Assisting the commander as the primary advisor for aviation mission survivability (AMS) and unit tactical maneuver.
- Serves as technical and tactical experts that train Soldiers at every level within the command. The assigned TACOPS officer will be school trained and qualified.
- Training and administering the commander’s AMS program. They are responsible for integrating threat versus aircraft survivability mission planning, formulating and disseminating TTP, and training small team and collective scenarios as part of the commander’s ATP and unit mission.
- Providing expertise on the unit’s individual, crew, and collective training to the commander.

Note. TACOPS officers will be PCs (see paragraph 1-68).

MAINTENANCE OFFICER
1-36. Maintenance officers help the commander develop and manage the unit’s maintenance program. Maintenance test pilots (MPs) and MEs are responsible for the following:
- Assisting the commander as the primary advisor for all maintenance programs.
- Maintaining a high level of aircraft proficiency.
- Scheduling aircraft using the maintenance flow chart to ensure mission completion and the most efficient use of maintenance assets.

Note. Maintenance officers will be PCs (see paragraph 1-68).
SAFETY OFFICER

1-37. The safety officers are responsible for the following:

- Assisting the commander in developing and implementing all unit safety programs.
- Tactically and technically proficient aviators and active participants in the ATP.

Note. Safety officers will be PCs (see paragraph 1-68).

FLIGHT SURGEON/AVIATION PHYSICIAN ASSISTANT

1-38. The FS/APA is responsible for the following:

- Commander’s primary advisor on the health and welfare of unit members and their families.
- Commander’s primary trainer/evaluator for all annual aeromedical requirements.
- Monitors the training environment to ensure the mental and physical well being of unit crewmembers. The FS/APA provides medical training, support, and advice to crewmembers and commanders on the physiological implications of operating in these environments.
- Have direct access to commanders at all levels and participate in all major inspections. The FS/APA will maintain results and files of these inspections.
- Fully integrated into the ATP and meet all training requirements according to AR 600-105, AR 600-106, and the appropriate ATMs.
- Conduct an annual assessment of the Aeromedical Environmental Training Program in conjunction with the commander to determine unique training or mission environmental exposures the aircrews operate in and advise commanders of mitigation strategies.
- Participate as a member of all Aviation Safety and Standardization Councils.

UNIT TRAINER

1-39. The UTs are responsible for the following:

- Instruct in specialized areas of training.
- Assisting in unit training programs and in achieving established training goals.
- Must be a PC or a NCM.

MASTER GUNNER

1-40. The master gunner is designated by the commander and serves on the unit standardization committee. He or she is the principle advisor to the commander and staff on aviation weapons employment. The master gunner is a weapons and tactics instructor who should be qualified as a standardization instructor pilot. At a minimum, the master gunner must be a current instructor pilot who is aircraft weapon system qualified and current in one of the attack or armed reconnaissance aircraft within the brigade. Additionally the battalion and brigade master gunner should be a graduate of the USAACE master gunner course and have the H-8 additional skill identifier. For CH-47/UH-60 equipped units, the commander designates a door gunner NCM SI to help administer the door gunnery program (FM 3-04.140).
PILOT IN COMMAND

1-41. The PC is:

- The unit’s first level trainer.
- Proficient in the aircraft and all aspects of the unit METL.
- Responsible for safe operation of the aircraft, the safety of all occupants, and the conduct of all operational and training aspects of a specific mission.

Note. The skills required to train fellow aviators and to be an effective PC are gained by actively participating in training events, mentoring by aviation leaders, and seeking professional development. A critical aspect of a unit’s PC program is to ensure that PCs are chosen—regardless of rank or position—that has the maturity required to execute PC duties. (See appendix C for recommended PC selection and designation program.)

INDIVIDUAL AVIATOR

1-42. Individual aviators have the ultimate responsibility of ensuring that they remain technically and tactically proficient at all assigned tasks, and they must remain current. Individuals must take advantage of every opportunity to become tactically and technically proficient aviators, including executing their individually tailored self development plan to meet designated goals. The individual aviators should have the ultimate goal of achieving PC status.

NONRATED CREWMEMBER

1-43. NCMs are individuals (other than aviators who perform duties aboard an aircraft) who are essential to the operation of the aircraft. They work with aviators when in flight using the team concept, and their duties are included in the corresponding ATM. NCMs are responsible for completing monthly flying hour requirements according to AR 600-106.

NONCREWMEMBER

1-44. Noncrewmembers (technical inspectors, avionics technicians, platoon sergeants, and so forth) perform duties that directly relate to the in-flight mission of the aircraft but are not essential to the operation of the aircraft. If the noncrewmembers are performing crew duties according to AR 600-106, they will be fully integrated into the ATP and must meet all training requirements applicable to NCMs.

INTEGRATING INDIVIDUAL, CREW, AND COLLECTIVE TRAINING

1-45. A critical aspect of the battle focus concept is understanding the responsibility for and linkage between collective mission essential tasks and individual and crew training. With their unique technical and tactical expertise, aviation NCOs and warrant officers (WOs) provide management assistance to the commander to train and evaluate the unit. As a team, the commander, S-3, command sergeant major (CSM), and senior standardization officer jointly prioritize the collective training of mission essential tasks on which the unit will concentrate its training during a given period. NCOs have the primary role in training and developing individual Soldier skills. WO trainers have the primary role in training and developing individual aviator and crew skills. Officers at every level remain responsible to ensure training is conducted to established standards during both individual and collective training.

1-46. Leaders at every level remain responsible for training to standard during individual, crew, and collective training. Commanders, with help from these evaluators and trainers will integrate realistic conditions—such as imperfect intelligence, reduced communications, smoke, noise, rules of engagement (ROE), simulated CBRN environments, battlefield debris, loss of key leaders, and civilians on the battlefield, JIIM requirements, and varying weather conditions into their training. Aviation standardization
and tactical operations WO and NCOs are highly specialized experts and trainers/evaluators who, because of their technical and tactical expertise, provide implementation advice and assistance to the commander to train and evaluate the unit.

READINESS

1-47. Unit commanders will maintain the highest unit status level possible with given resources. Although AR 220-1 provides aviation commanders with guidance on readiness reporting, this TC includes major changes in its guidance for readiness reporting. This TC will assist commanders in determining the “T” (trained) portion of the unit’s “C” (category) rating. Emphasis must be placed on proficiency rather than currency for individuals, crews, and units.

READINESS REPORTING

1-48. FM 7-0, CATS, and Standards in Training Commission (STRAC) strategies are the doctrinal templates of training events, event frequency, and associated resources that commanders use in developing a unit strategy. AR 220-1 requires monthly unit status reports (USRs). There are significant changes for aviation commanders in the latest AR 220-1. With respect to training, commanders are directed to—

- Apply two separate metrics, T-METL and T-days, to determine their unit’s ability to effectively employ its systems and equipment during those critical tasks required by the wartime missions for whom the unit was organized or designed. Commanders report the lowest of these training levels (T-levels) in the monthly USR.
- Report squad/crew/team/system manning qualification data. Metrics used include key individual, fully manned and qualified, and combat capable.
- Review and confirm their unit T-level determinations by comparing executed training event with planned training events and the results achieved during executed events. Commanders are then directed to develop a training plan to achieve and sustain METL proficiency. The plan, briefed at the QTB, utilizes the CATS and STRAC (Department of the Army Pamphlet [DA PAM] 350-38) as its basis. This plan is only as effective at the accuracy in which commanders and staff assess the quality of training events executed.

1-49. In the future, the SHP will be a reportable item as it pertains to the commander’s training program. Commanders will program virtual simulators as part of their training and then report its execution in meeting his goals. Any under execution at the individual/crew or collective level will trigger a requirement for explanation to higher headquarters.

TRAINING TO SUSTAIN PROFICIENCY

1-50. Sustaining individual and crew proficiency is required before executing collective training. If crewmembers do not attain and sustain individual and crew proficiency, collective training cannot be accomplished to standard. Once individuals and units have trained to proficiency, leaders must structure individual and collective training plans at the frequency necessary for sustainment.

1-51. Army units prepare to accomplish wartime missions by frequent sustainment training of critical tasks rather than by infrequent “peaking” to the appropriate level of wartime proficiency. Sustainment training enables crews and individuals to operate in the band of excellence described in FM 7-0 by performing the appropriate number of repetitions of critical task training in a realistic and challenging environment.
1-52. This methodology has not only the potential to sustain proficiency, but provide a unit that continually improves rather that peaks. UTLs and ATMs are tools to help achieve and sustain collective, crew, and individual proficiency. The aviation task-based CATS cross walks these tools to support the development of unit training plans. A major challenge is to balance resources to satisfy requirements at each level. Training to sustain individual and crew proficiency is primarily done during collective training. Collective training should be conducted as often as possible in conjunction with joint or combined arms training.

1-53. Units must maintain a level of readiness and proficiency at all times. This “threshold” allow units to advance to the next level of collective training or reset from our operational deployment more rapidly and safely. A series of prescriptive “events” are then used to progress to the “objective” focus of collective proficiency. A sample of live and virtual training events for a battalion organization is depicted below (figure 1-8).

1-54. The CATS provides the training and resource model that enable a unit to achieve collective proficiency. Being able to merge the virtual and live environments will allow commanders to gain the most from their time and resources.

1-55. Imagine conducting an orders process with a battalion on a training mission. After the back briefs and company level planning involving the tactical terrain visualization system, a “rock drill” is conducted on the hangar floor. In the past, soldiers would have jumped into the aircraft and conducted the mission. Today, a mission rehearsal can be conducted in the aviation combined arms tactical trainer (AVCATT) with each company. Soldiers are able to conduct a full battalion level rehearsal with company leads, a C-2 aircraft, and a downed aircraft recovery team (DART) assets. By ensuring every event has an after-action review (AAR), maximum training with minimum resource expenditure can be achieved. How much better will that mission be executed than if Soldiers had just jumped into the aircraft with no prior rehearsal? A quality training event for all and it utilizes resources in an efficient manner.
1-56. Implementers at all levels should recognize when a unit’s individual, crew, and especially collective task proficiency begins to decline and then determine the cause. A decline in collective proficiency may be caused by an obvious factor, such as a lack of collective training opportunities. However, commanders must also ensure that training resources are allocated to maintain individual crewmember proficiency. Once individuals and units, have trained to proficiency, leaders must structure collective and individual training plans to sustain that proficiency.

PROTECTING THE FORCE

1-57. Force protection is vital to unit effectiveness, training, and surviving on and off the battlefield. An aviation safety program in conjunction with an effective ATP and AMS program are arguably the most critical factors in any unit’s training program.

LEADER DEVELOPMENT

1-58. Aviation leaders must be proficient aviators and capable of performing individual and crew duties as pilots to ensure that they are capable of fighting their systems and units. A fundamental step in the leader development process, for aviators, is achieving PC. An ATP must provide for leader development and collective training. Special attention should be given to providing opportunities for developing and sustaining junior commissioned and warrant officer aviation skills and knowledge. Battalion commanders are required to have a comprehensive PC program that entails much more than establishing a PC evaluation. This PC program should ensure that the task/condition/standards for PC selection and designation remain as high as possible, effectively ensuring the tactical and technical proficiency of all PC-designated aviators. PCs are required to demonstrate maturity in all circumstances, to be leaders in the cockpit, and to be capable of making sound technical and tactical decisions while executing the unit’s METL. Commanders must ensure that their PC program is designed to develop their aviators into mature leaders, decision makers, and proficient pilots.

COMMANDERS AS PILOTS IN COMMAND AND EVALUATORS

1-59. One of the principal tenets of this manual is to involve commanders in the ATP. Central to this tenet are the following:

- Commanders must have the skill sets necessary to know what right looks like.
- Commanders who have the skill sets necessary to know when an aviator should or should not be advanced in the RL progression program.
- Commanders who fully understand that the ATP is their program.

PILOT IN COMMAND REQUIREMENTS FOR COMPANY COMMANDERS

1-60. The following directives are time-sensitive training requirements intended to strengthen the technical and tactical warfighting skills of aviation company commanders, allowing them to truly lead and fight from the front.

1-61. For commanders not in a RL 1 status upon assumption of command, PC status MUST be achieved not later than 180 days after progression to RL 1 day/night status. Commanders that are RL 1 upon assumption of command MUST achieve PC status within 180 days from the date of command. Mobilized reserve component (MRC) commanders have 180 days from mobilization and aircraft availability to achieve PC status. All provisions of this TC and the appropriate ATM apply to RL progression. The brigade commander may waive PC requirements (see paragraph 1-66).
1-62. All active Army and MRC company commanders with aircraft assigned to their company that have been in command for at least 180 days and have been RL 1 for at least 180 days MUST be a PC in their primary aircraft. Thereafter, company commanders assuming command MUST progress to PC in their primary aircraft not later than 180 days after they progress to RL 1, assume command, or mobilize with aircraft available, whichever occurs first.

1-63. This requirement only applies to active Army aviation company commanders and MRC aviation company commanders with organic aircraft assigned and available. Non-mobilized reserve component (NMRC) commanders should set this requirement as a goal.

1-64. Extensions may be granted by first O-6 in the chain of command for days lost due to the following:

- Temporary duty (TDY) or deployment to a location where the crewmember is unable to fly.
- Medical or nonmedical suspension from flight.
- Grounding of aircraft by Headquarters, Department of the Army (HQDA).
- Leave approved by the unit commander.
- Aircraft nonavailability due to movement to deployment/deployment, and aircraft preset/reset (less than 50 percent of unit aircraft assigned are not available).
- Documented flight cancellations due to weather and/or maintenance that have had a significant impact on flight operations, as well as restrictions to flight operations due to no fly times from the host country in which the unit operates.

1-65. Extensions to 180-day PC requirement will not exceed the amount of time of the days lost and will be entered on the DA Form 7122-R according to appendix A of this TC and on the DA Form 759, becoming a part of the aviator’s permanent aviation record.

1-66. Brigade commanders can waive this requirement for company commanders who will be in command less than 12 months or will not have aircraft available for at least 12 months. This waiver will be in a memorandum format, included in the miscellaneous section of the aviator’s individual aircrew training folder (IATF), annotated on the DA Form 759 during the annual closeout, and given to the individual once signed.

1-67. If the above requirements are not met, the commander will suspend the aviator according to AR 95-1 and AR 600-105 and investigate. Upon completing the investigation, the suspending commander will—

- Request a 30-day extension according to AR 95-1 to complete requirements from the first O-6 in the chain of command.
- If an extension is not granted or the requirement is not met at the end of the extension period, place the officer before a flight evaluation board according to AR 600-105, paragraph 6-1a, or request a waiver from this requirement from HQDA, G-3/5/7 (DAMO-AV), 400 Army Pentagon, 3A474, Washington, DC, 20310. (Extensions and/or waivers will be entered on DA Form 7122-R and DA Form 759.)

Note. This will require that battalion and brigade commanders screen potential aviation company commanders for units with assigned aircraft to ensure that the potential company commanders have the ability to progress to PC status. Potential company commanders that do not possess the ability to meet these requirements should be assigned to positions that will allow them to develop additional aviation experience.

PILOT IN COMMAND REQUIREMENTS FOR AVIATION WARRANT OFFICERS WITH SKILL QUALIFICATION IDENTIFIERS IN VALID POSITIONS

1-68. The following directives are time-sensitive training requirements intended to strengthen the technical and tactical warfighting skills of aviation WO with DA-awarded skill qualification identifiers.
1-69. This requirement only applies to active Army aviation WO and MRC aviation WO assigned to units with organic aircraft assigned and available with valid positions. NMRC WO should set this requirement as a goal.

1-70. The 180-day PC requirement excludes days lost due to—

- TDY or deployment to a location where the crewmember is unable to fly.
- Medical or nonmedical suspension from flight.
- Grounding of aircraft by HQDA.
- Leave approved by the unit commander.
- Aircraft nonavailability due to movement to deployment, redeployment, and aircraft preset/reset (less than 50 percent of unit aircraft assigned are not available).
- Documented flight cancellations due to weather and/or maintenance that have had a significant impact on flight operations, as well as restrictions to flight operations due to no fly times from the host country in which the unit operates.

1-71. Brigade commanders can waive this requirement for WO being assigned to units for less than 12 months or for units that will not have aircraft available for at least 12 months. This waiver will be in a memorandum format included in the miscellaneous section of the aviator’s IATF, annotated on the DA Form 759 closeout, and a copy given to the individual once signed.

1-72. If the above requirements are not met, the commander will suspend the aviator according to AR 95-1 and AR 600-105 and investigate. Upon completing the investigation, the suspending commander will—

- Request a 30-day extension from the first O-6 in the chain of command.
- If an extension is not granted or the requirement is not met at the end of the extension, place the officer before a flight evaluation board according to AR 600-105 (paragraph 6-1a) or request a waiver from this requirement from HQDA, G-3/5/7 (DAMO-AV), 400 Army Pentagon, 3A474, Washington, DC, 20310. (Extensions and/or waivers will be entered on DA Form 7122-R and DA Form 759.) The waiver authority according to AR 95-1, paragraph 4-2, does not apply.

Note. This will require that the company, battalion, and brigade commanders screen potential warrant officers and adhere to the ATRRS PC requirements specified when selecting individuals for the TACOPS, Safety, IP, and MP courses and possess the ability to attain PC status. Potential WOs that do not possess the ability to meet these requirements should not be selected to these positions.

TRAINING MANAGEMENT

1-73. Aviation commanders should become familiar with FM 7-0. This publication is the training foundation for the Army to format training plans, QTBs and resourcing documents within the divisions and corps. However, this field manual does not consider some unique challenges of aviation training; thus, this TC provides directives. The commander’s challenge is to develop a battle-focused ATP in concert with the battle-focused plans of the other members of the combined arms team, and to integrate it into appropriate QTBs as a vehicle to educate nonaviators.

TRAINING PLANNING PROCESS

1-74. The training planning process (as outlined in FM 7-0) links unit METL and the execution of battle-focused training. Commanders initiate the process by tasking primary staff members, subordinate commanders, WO, and NCO leaders to assess the T-level of mission-essential tasks. The process includes long-range, short-range, and near-term planning. The ATP is an integral component of the long and short-range training calendars. Long-range and short-range planning must be specifically addressed in the commander’s quarterly training guidance and must be an integral part of QTBs at all levels of command.
RESOURCING

1-75. Resourcing is a challenge for all commanders. Chapter 9, of this TC, provides guidance on preparing the unit's flying-hour program. Most importantly, aviation commanders must understand and work the resourcing processes. The division commander's QTB is an effective medium for educating higher-level commanders and staffs on the aviation resourcing challenges.

TRAINING AIDES, DEVICES, SIMULATORS, AND SIMULATIONS

1-76. It is difficult in today’s world to train and sustain a modern aviation battalion at an acceptable level of proficiency without using TADSS. Resources, environmental restrictions, personnel turbulence, and peacetime safety constraints put serious limitations on the dictum to "train as we fight." ATPs must reflect structured training programs that maximize the use of available TADSS for individual, crew, and collective training. Structured technical and tactical training programs, combined with supervision and AARs, are necessary for effective individual, crew, and collective simulation training periods. Again, the aviation CATS maximize the use of simulators for individual, crew, and collective training tasks.

1-77. Aviation has a very thorough complement of simulators to enhance our individual, crew and collective training events. From the individual/crew level, most of our aircraft have high fidelity simulators that enable commanders to tailor their training programs and apply a requisite amount of rigor to the tasks. The AVCATT has collective fidelity so that commanders can build their collective training efforts and have the capability during mission and gunnery rehearsal with the full ability for high-fidelity AAR.

1-78. Leveraging our simulators and simulation will only be as effective as our leadership is with training management and understanding our training capabilities. Aviation commanders at all levels enjoy a considerable training capability and capacity as a result of the Army’s significant investment in aviation training. The current execution of ARFORGEN is a significant challenge but also presents opportunities to exploit simulation for RL progression and as complementary building blocks for attack gunnery, door gunnery, manned/unmanned teaming and collective training.

LIVE-VIRTUAL-CONSTRUCTIVE TRAINING ENVIRONMENTS

1-79. Commanders must use a mix of live-virtual-constructive (L-V-C) training to achieve and sustain unit and staff proficiency on selected METL tasks and supporting unit and staff battle tasks within the “Band of Excellence.” The goal is to train mission essential tasks to standard and sustain a wartime readiness posture. Aviation units attain and sustain warfighting proficiency through a combination of the three training environments. Because of aviation’s suite of virtual simulators, we enhance our training capability with a mix of live and virtual simulation, starting at the individual and crew level through the battalion and brigade level. Constructive exercises also enhance our staff proficiency and provide better capabilities as we move to live events.

1-80. The three training environments can be blended to provide the most benefit for Soldiers. Soldiers must also use the available resources at the most relevant time within a unit’s training program. The intent is to train to standard. It is the commander’s responsibility to be familiar with all three of these tools and to select the most applicable within the allocated resources and available training time. The commander, when planning training, must determine the appropriate mix that meets the unit training requirements and objectives. Units may conduct training using L-V-C training simultaneously.
This page intentionally left blank.
Chapter 2
Implementation Guidance

SYMBOL AND WORD DISTINCTION SYMBOL USAGE

2-1. The diagonal (/) indicates three options—for example, IP/SP means either one (IP) or the other (SP) or both (IP and SP).

WORD DISTINCTIONS

2-2. Will, must, should, and may—
- Will or must indicates a mandatory method of accomplishment.
- Should indicate a preferred, but not mandatory, method of accomplishment.
- May indicates an acceptable method of accomplishment.
- NVS, NVG, and NVD definitions are as follows:
 - NVS refers to the NVS that is attached to the aircraft; for example, the target acquisition and designation system/pilot’s night vision system on an AH-64.
 - NVG refers to any NVG image intensifier system; for example, the AN/AVS-6 aviator night vision imaging system.
 - NVD refers to NVS, NVG, or NVS and NVG.

2-3. Aircraft identifications conventions are as follows:
- Aircraft Basic Mission (Class/Type). Identifies the primary function and capability of an aerospace vehicle (such as attack, fighter, helicopter, patrol, transport, trainer). Aircraft basic mission is represented by a letter of the alphabet (such as fighter [F-16], transport [C-135], trainer [T-38], bomber [B-1]).
- Modified Mission. Identifies modifications to the basic mission of an aircraft. The modified mission identification appears to the left of the basic mission symbol (such as reconnaissance [RF-4C], tanker [KC-135R], cargo [CH-47D], antisubmarine [SH-60B]).
- Aircraft Design (Model). Identifies major changes within the same basic mission. Design numbers appear to the right of the basic mission symbol, separated by a dash (such as F-18, H-60, C-17).
- Aircraft Series. Identifies the production model of a particular design number representing major modifications significantly altering systems components. Consecutive series symbols appear to the immediate right of the design number (such as F-16A and F-16C, KC-135A and KC-135R, AH-64A and AH-64D).
This page intentionally left blank.
PART TWO
Individual and Crew Training

Chapter 3
Aircrew Training Program

INTRODUCTION

INDIVIDUAL/CREW TRAINING

Our trained aircrews are the foundation of our aviation unit’s combat proficiency.

LTG Anthony Jones, former Aviation Branch Chief

INDIVIDUAL/CREW QUALIFICATION

3-1. Aviators arrive at the unit with various levels of experience. They are recent graduates of flight school or they are already proven aviators with varying levels of aviation background. These aircrew members progress from a RL based on a commander’s evaluation to RL 1 by demonstrating proficiency in tasks required by the appropriated ATM and those tasks selected by the commander based on the unit’s METL. Prior to designation as RL 1, training must be conducted and assessed by the appropriate aviation trainers. This process is explained in detail in this TC and the appropriate aircraft ATM. This is a prescriptive process mandated by AR 95-1 and must be strictly followed to ensure standardization across our force.

3-2. All aspects of individual/crew training requirements have been included in the development of the aviation CATS so that the resources can be planned and allocated to be sure training can be executed. All of the analysis has been done to ensure we capture the different variables of turbulence in our aviation units. RL training, personnel turnover, maintenance rates, and FAC 1/2 designations are considered in this model. For the first time, the aviators supported from other units (CAB headquarters, aviation support battalion) have been included in the calculations (figure 3-1, page 3-2).
Figure 3-1. Combined arms training strategy assumptions/variables

3-3. The ATP is the commander’s program for training combat-ready rated and nonrated crewmembers. This training covers the entire spectrum from task proficiency at the individual level, to crew proficiency, and finally to unit proficiency in executing mission-essential tasks necessary to accomplish successful joint and combined operations as defined in FM 7-15. As a minimum, all ATPs will include—

- A description of the benefits to be gained through standardization.
- Objectives to be achieved.
- The procedures or actions to be standardized described in detail.
- A specific plan for implementation.
- An effective procedure for enforcement.
- Delineated responsibilities.

3-4. The ATP applies to all Army aviators in operational flying positions according to AR 600-105 and NCMs according to AR 600-106. It also applies to noncrewmembers that perform crewmember duties (AR 600-106). Other individuals authorized to perform crewmember duties in Army aircraft will comply with AR 95-1 and all appropriate supplements to AR 95-1 and the appropriate ATM.

3-5. Commanders use publications such as ATMs, ARTEPs, UTLs, mission training plans (MTPs), FM 3-04-series, FM 7-0, and the CATS to develop the unit’s ATP. The first step in this process is an evaluation of the unit’s METL to determine training requirements.
3-6. WO and NCO trainers and leaders’ (implementers) role in ATP development are the following:

- Warrant officer and NCO leaders and trainers are the primary unit personnel tasked with implementing the ATP, especially at the individual and crew training levels.
- As the commander develops the ATP, input from the unit’s implementers is vital. Individual and crew training is the foundation on which the ATP is built. Warrant officer and NCO implementers advise the commander on required tasks, applicability of mission and additional tasks to unit roles and METL-based missions, geographical factors that affect training, operational employment, training assets, and recurring training issues.
- After analysis of unit METL, implementer input, and higher commander’s guidance, commanders develop a supporting individual CTL for each crewmember. (Part Two, chapter 4 of this TC contains more detailed guidance on the CTL.) Commanders will then establish a short-range, long-range, and near-term training plan to ensure crews gain and maintain proficiency in unit collective tasks. Implementers must be familiar with the commander’s training intent and with the three training plans to successfully implement the ATP.

3-7. The commander will establish an ATP appendix to the unit’s SOP. This appendix will address specific requirements for the following:

- The conduct of training.
- Crewmember and crew evaluation.
- PC training, assessment, and evaluation.
- Assessment of the ATP effectiveness.
- Revision of the ATP.
- The requirements from DA PAM 385-90, as applicable.
- Refer to appendix C for examples of SOP contents.

MISSION QUALIFICATION

3-8. RL 1 aviators are those who have completed RL progression training and demonstrate the proficiency to be a member of a battle-rostered crew. RL 1 aviators train as crews to sustain and continually improve base task proficiency, proficiency in the conduct of the unit’s METL requirements, and refine the skills necessary to perform as part of the unit.

3-9. The use of simulation is very useful in the conduct of training. Simulators are excellent for use in training emergency procedures, maneuvers that are infrequently conducted in the aircraft, and as a rehearsal tool for complex portions of operations. They can also be used to correct negative trends found through analysis of accidents and to practice those skills in a low risk environment. As the fidelity of our simulators improves, environmental training can be very beneficial to our aircrews.

3-10. USAACE has developed a deployable simulator strategy for heavy, medium, and light CABs to enhance these training capabilities within a theater of operation. Commanders will integrate these assets into their training as the operational tempo allows.

AIRCREW TRAINING PROGRAM PROGRESSION

3-11. Aviation commanders use a series of readiness levels (training gates) to track implementation and accomplishment of the Army’s crawl, walk, and run training methodology. RL training develops individual and crew proficiency in tasks that support collective tasks. RL 1 crewmembers train to sustain and improve collective task proficiency. RLs identify the training phase in which crewmembers are participating and measure crewmember readiness. Commanders evaluate each duty position to determine how it can best support the unit’s METL. They develop CTLs of base, mission and additional tasks to include the tasks in each flight mode required to accomplish the unit’s mission. Commanders also specify annual NVD training, flying-hour, and simulation device requirements according to the appropriate ATM. The use of simulation is critical in the development and integration of our crawl-walk-run methodology of training our formations (figure 3-2, page 3-4).
3-12. The CTL is a commander’s directive to the crewmember that mandates specific training and evaluation requirements. The CTL requirements are battle focused, task-based requirements derived from the unit’s METL, UTL and the appropriate ATM. Task based aviation CATS assist the commander in the development of individual CTLs. The CTL designates authorized crew duty stations and specifies the hours, tasks, iterations, frequency, evaluation requirements, and ATP responsibilities the crewmember must meet during the training year.

3-13. AR 95-1 establishes procedures, policy, and responsibilities for crewmember training, and standardization requirements, management of aviation resources, and the ATP. Part two of this TC provides specific guidance on implementing the commander’s ATP.

3-14. Crewmembers must have a current DA Form 4186 (or equivalent according to AR 40-501) authorizing performance of aviation duties signed by the commander.

Readiness Level 1

3-15. Continuation Training-RL 1. A crewmember is fully qualified and proficient in base and ATP required mission and additional tasks. RL 1 crewmembers sustain and improve proficiency in these tasks as they accomplish the continuation training requirements established in the appropriate ATM. RL 1 crewmembers are undergoing collective task training. An individual crewmember designated RL 1 is in crew and individual proficiency sustainment training and participates in collective proficiency and sustainment training. These crewmembers must complete continuation requirements established in the appropriate aircraft ATM and all other requirements of the ATP as designated by the commander on the CTL and unit SOP.
READINESS LEVEL 2

3-16. Mission Training-RL 2. A crewmember is fully qualified and proficient in all base tasks. RL 2 crewmembers train to proficiency in the mission and additional tasks selected by the commander in support of the unit METL. Mission tasks are designated 2000-series tasks. Additional tasks are designated 3000-series tasks.

READINESS LEVEL 3

3-17. Qualification Training-RL 3. A crewmember is not qualified in the aircraft. Tasks required for training are identified in the appropriate USAACE-developed and approved POI/flight training guide (FTG) or the appropriate ATM.

3-18. Refresher Training-RL 3. A crewmember is training to proficiency in base tasks. Base tasks are designated 1000-series tasks. Paragraph 3-31 describes the three types of refresher training programs.

FLIGHT ACTIVITY CATEGORIES

3-19. All operational flying positions will be designated by the brigade level commander as one of three flight activity categories—FAC 1, FAC 2, or FAC 3. The commander notes the FAC level, based on their organizational position, on each individual crewmember’s CTL. Flight task requirements for each TOE or TDA position determine FAC designation. Flight activity categories do not apply to DACs, ARNG technicians in facility designated aircraft or NCMs. Commanders will not change a FAC designation merely to reduce the individual or unit flying-hour requirements, proficiency requirements, or to accommodate an individual’s preference. FAC designations are for positions, not individual aviators.

3-20. Crewmembers that are over-strength/over-structure to MTOE/TDA operational flying positions and assigned to excess can be designated FAC 1, FAC 2, or FAC 3 as determined by the brigade level commander and required by resource constraints. Aviators in the first 3 years of their initial operational assignment(s) in their assigned aircraft after graduation from flight school, except those granted an exception to policy by the Army Command, will not be assigned to FAC 3 positions. Waivers to FAC 3 requirements must be approved according to AR 95-1.

Note. Crewmembers assigned to an excess position are not authorized an alternate or additional aircraft.

Note. ARNG crewmembers that are over-strength/over-structure to MTOE/TDA operational flying positions can be designated FAC 2 or FAC 3 in their primary aircraft and are not authorized an alternate or additional aircraft. Crewmembers assigned to an excess position may be designated FAC 1.

FLIGHT ACTIVITY CATEGORY 1

3-21. These duty positions require a high degree of proficiency in the tactical employment of the assigned aircraft. The higher semiannual flying-hour requirements of FAC 1 crewmembers assigned to FAC 1 positions reflect the requirement for proficiency in all METL/ATM tasks. All operational flying positions at company/troop level with assigned aircraft are designated FAC 1 positions (see exception under FAC 3). All aviators with less than 2 years of their initial operational assignment(s) in their assigned aircraft after graduation from flight school must be assigned to FAC 1 designated duty positions.

FLIGHT ACTIVITY CATEGORY 2

3-22. These duty positions require the same level of proficiency in individual and crew tasks as FAC 1 duty positions, but less in company and battalion collective mission tasks. FAC 2 crewmembers’ collective proficiency should be at a level sufficient to minimize training up to the FAC 1 level. Commanders must
judiciously select FAC 2 mission and additional tasks to ensure maximum readiness within resource constraints. Commanders will not expect FAC 2 crewmembers to be immediately available to perform collective mission tasks that are not part of their training program. Units that do not have a METL, or MTOE that supports the tactical employment of its assigned aircraft, such as a flight detachment or a table of TDA unit, will designate unit positions as FAC 2.

Flight Activity Category 3

3-23. FAC 3 designation may only be applied in TDA units and to positions in brigade-level and above TOE units. Designation of a position as FAC 3 is not authorized in a TOE battalion or lower organization, unless the aviator is not qualified in an aircraft assigned to the battalion. RCMs in FAC 3 positions are prohibited from performing crewmember duties in Army aircraft. To designate a position as FAC 3, a simulator must be available for the crewmember’s use. A rated crewmember in a FAC 3 position must be qualified in the aircraft for which the simulator was developed. The RCM must meet all simulator flying-hour, task iteration, and evaluation requirements specified in this TC and the appropriate ATM. Aviators assigned to FAC 3 positions that have not completed an instrument evaluation within the previous ATP year must complete an instrument evaluation within 90 days of FAC 3 assignment. FAC 3 aviators will complete a minimum of one iteration of instrument base tasks annually. All RCMs in FAC 3 positions must complete an instrument evaluation and operator’s manual written exam during their APART. Aviators in the first 3 years of their initial operational assignment(s) in their assigned aircraft after graduation from flight school, except those granted an exception to policy by the Army command, will not be assigned to FAC 3 positions. Waivers to FAC 3 RCM requirements must be approved according AR 95-1.

Operational and Nonoperational Flying Positions

3-24. Commissioned or warrant officer positions listed on a TDA or MTOE and coded for a basic branch code 15 (Aviation) or area of concentration of 67J (Medical Service Corps) and some functional area 51 (Acquisition Corps) or primary military occupational specialty 152 through 155 are considered flying duty positions. TDA and MTOE documents may be viewed at https://webtaads.belvoir.army.mil. Flying duty positions are further divided into operational and nonoperational positions. Nonoperational positions will have the G-7 additional skill identifier annotated in the TDA or MTOE position. All aviators assigned to an operational flying position must be integrated into an ATP. Aviators assigned to nonoperational or any other nonflying duty position are not required to be integrated into an ATP but may have other requirements such as medical. Additionally, aviators other than warrant officers assigned to nonoperational or any other nonflying duty position are prohibited from performing crewmember duties (AR 95-1).

3-25. Commanders must check the credentials of any aviator not assigned to their formation but flying with their unit. When an aviator flies with a unit for anything other than an authorized demonstration flight, the aviator must not be otherwise prohibited from performing crewmember duties and must be considered as part of the rated inventory (AR 600-105).

3-26. All aviators in aviation service, whether or not assigned to flying duty positions, must meet class 2 medical fitness standards for aviators and class 2F medical fitness standards for flight surgeons for flying duty (AR 40-501), and be issued a medical clearance on DA Form 4186.

3-27. All aviators must receive an annual DA Form 759 closeout (FM 3-04.300). When assigned to locations without ATP support, local commands must develop procedures to ensure IATFs and DA Form 759 are managed and annual requirements are completed.

Commander’s Evaluation

3-28. The purpose of the commander's evaluation is to determine a crewmember’s proficiency and corresponding RL. This evaluation consists of a flight records review and, if directed by the commander, PFE. The evaluation results in an initial RL designation. The commander/designated representatives will complete the evaluation according to AR 95-1. The commander’s evaluation must occur within 45 calendar days after the crewmember signs into the unit or after the effective date of his flying status orders, whichever occurs last. The ARNG commander or his designated representative will complete the
commander’s evaluation within 45 days after unit assignment, or the effective date of the crewmember’s NGB or state aviation services orders, as applicable.

3-29. When determining RL status of a newly assigned crewmember, if any element of an APART (instrument evaluation, standardization evaluation or operators manual examination) in the previous ATP year has not been completed, but the crewmember has flown within the preceding 180 days, that element must be satisfactorily completed prior to the crewmember being designated RL 2 or RL 1. If crewmembers do not complete the element satisfactorily, they will be designated RL 3 until those task(s) required for that evaluation are satisfactorily completed. This requirement also applies to first utilization IERW and FSXXI course graduates.

RECORDS REVIEW

3-30. The crewmember is required to turn in the IATF and the individual flight records folder (IFRF) according to AR 95-1. The commander—assisted by the unit SP/IP/SI/FI—will review the crewmember's IATF and the IFRF. The commander will assess the individual's qualifications and tasks performed in crewmember’s previous assignment with the tasks required by the assigned duty position. Based on this review, the commander may designate an appropriate RL for the crewmember and document that RL on the individual's DA Form 7120-R.

PROFICIENCY FLIGHT EVALUATION TO DETERMINE READINESS LEVEL STATUS

3-31. If the initial RL cannot be determined by the records review or if the commander desires, the crewmember will undergo a PFE. At a minimum, the PFE will consist of base and mission tasks designated by the commander in the unit ATP SOP. The results of the PFE will determine the crewmember's RL designation, which will be documented on the individual's DA Form 7122-R. The local area orientation (LAO) flights may be completed during the PFE.

CONSIDERATIONS

3-32. To be designated RL 1, based solely on a records check, a crewmember must have—

- Satisfactorily completed all APART requirements within the previous ATP year.
- A current DA Form 4186.
- Completed a LAO (chapter 4).
- Met ACT-E requirements.

3-33. RCMs on their first assignment following the IERW course, FSXXI, or aircraft qualification course will not be designated RL 2 or RL 1 based solely on a records review. These crewmembers must receive a PFE for initial designations other than RL 3.

3-34. A crewmember having not flown within the previous 180 days in the aircraft mission type and design (for example: H-47, H-60, and H-64 must be designated RL 3 for individual/refresher training. Refer to paragraph 2-4).

3-35. A crewmember, previously designated as an RL 1 crewmember may be designated RL 1 based solely on a records check when reassigned to a similar type battalion or brigade (METL, CTL, or ATP) upon completing the LAO. ARNG crewmembers that transfer between units or support facilities within the same state can retain their previously designated RL status if they will be participating in flight activities in the same type of aircraft in their new assignment.

READINESS LEVEL PROGRESSION

GENERAL

3-36. Tasks required for crewmembers to progress from RL 3 to RL 1 are the base 1000-series tasks established by the appropriate ATM and the mission (2000-series), additional (3000-series) and maintenance (4000-series) tasks listed on the individual's CTL. The CTL requirements are battle-focused,
task-based requirements derived from the unit’s METL. In some cases, crewmembers may have more than one RL. For example, a crewmember may be RL 1 for aircraft continuation training and may be RL 3 or RL 2 for NVG training. Crewmembers cannot be NVG RL 1 while RL 2 or RL 3 Day/Night. The commander will designate SIs/FIs to conduct RCM and NCM qualification, refresher, and mission training. Additionally, the commander will designate SIs/FIs to conduct NCM qualification, refresher, and mission training. NVG RL progression will be according to this TC and the appropriate ATM.

TIME FRAMES

3-37. Active Army crewmembers and active AGR crewmembers have 90 consecutive days to progress from one RL to the next. RC crewmembers have 1 year to progress from one RL to the next. This progression requirement excludes days lost due to—

- TDY or deployment to a location where the crewmember is unable to fly.
- Medical or nonmedical suspension from flight.
- Grounding of aircraft by Headquarters, Department of the Army.
- Leave approved by the unit commander.
- Aircraft nonavailability due to movement to deployment/redeployment and aircraft preset/reset.
 (Less than 50 percent aircraft available.)
- Documented flight cancellations due to weather and/or maintenance that have had a significant impact on flight operations, as well as restrictions to flight operations due to no fly times from the host country in which the unit operates.

Note. If the exclusion period exceeds 45 consecutive days, active Army crewmembers must restart their current phase of RL progression. They then have 90 consecutive days to progress to the next RL. If the exclusion period exceeds 90 days for those RC crewmembers who have 1 year to progress, restart their current phase of RL progression.

3-38. Crewmembers must demonstrate proficiency in each mode of flight (day, night, NVD, or CBRN) as required by the ATM and the CTL for each task they are required to perform.

3-39. The RL progression evaluation may be continuous or it may be administered after the crewmember has completed training.

3-40. Crewmembers removed from RL 1 for a training deficiency and reclassified RL 2 or RL 3 must still meet all ATP requirements for RL 1. To be redesignated RL 1, those crewmembers must demonstrate proficiency in only those tasks and in the mode of flight graded unsatisfactory to an SP/IP/IE/ME/SI/FI as appropriate. Removal from RL 1 will be documented on the crewmember’s DA Form 7122-R and MUST be signed by the commander.

Note. When an ARNG crewmember’s RL is downgraded due to a training deficiency, they have 90 days to complete the required training.

3-41. When a crewmember has not progressed to the next RL within the time specified, the unit commander will take action according to AR 95-1.

Note. Readiness levels do not apply to DACs or FAC 3 RCMs.

READINESS LEVEL 3 INDIVIDUAL TRAINING

3-42. The platoon leader centralizes planning to provide a consistent training focus for the platoon. However, refresher training is primarily conducted by the unit standardization personnel. They do the detailed planning and execution to ensure that refresher training sustains strengths and overcomes the weaknesses unique to each aviator. This capitalizes on the experience and expertise of the unit’s
standardization trainers, but this does not mean that the platoon leader gives up the responsibility to supervise training, develop subordinates, and provide feedback. RL 3 crewmembers are only authorized to fly with SP/IP/IE/SI/FI as appropriate.

Note. Crewmembers designated RL 3 will not perform any mission (2000-series) or additional (3000-series) or maintenance (4000-series) tasks until progressed RL 2.

3-43. Crewmembers are designated RL 3 for qualification, deficiency, or refresher training. Each type of training is designed to attain proficiency in base tasks.

- RL 3 for Qualification and/or Refresher. Qualification and/or refresher training is used during integration into the unit ATP following the commander’s evaluation. Flight and academic requirements are detailed in the aircraft ATM. All base tasks will be trained and evaluated in each mode of flight (more demanding mode of flight does not apply) required on the CTL according to the appropriate ATM. Upon completion of the training, crewmembers are designated RL 2 for mission training.

- RL 3 for Deficiency. Refresher training used after an evaluation indicates a crewmember deficiency in base task(s). Only those tasks found deficient are required to be trained and evaluated in the mode of flight the failure occurred. Upon completion of the training, crewmembers are normally redesignated RL 1. If mission tasks were also found deficient, progress the crewmember to RL 2 for deficiency.

- Refer to paragraph 5-15 for aircraft currency requirements.

3-44. During RL 3 progression—

- Specific requirements, tasks, and modes of flight in the appropriate ATM must be accomplished.

- Crewmembers progress from RL 3 to RL 2 by demonstrating proficiency in all ATM base tasks and appropriate academic subject area to an SP/IP/IE/SI/FI as appropriate. This requirement does not imply a written test requirement.

- When crewmembers fail to progress to RL 2, commanders must investigate, determine the reason, and take appropriate action (AR 95-1).

- RCMs serving in their first utilization tour must complete tables III/IV (FM 3-04.140). If tables III/IV are a live-fire event and resources are not available during the RL progression period, then completing these tables is not required until the unit’s next live-fire gunnery. If upon records review it is determined that an assigned aviator has not met the annual table VIII requirements, the commander may require the aviator to fire tables III/IV based on individual aviators level of experience and time passed since last qualification.

Note. RC crewmembers that are RL 3 for not completing gunnery qualification or sustainment requirements must complete APART requirements.

3-45. Commanders may reduce a crewmember to RL 3 status for mitigating circumstances, such as a lengthy illness, TDY, or failure to maintain proficiency. Commanders are authorized to suspend aviators 30 days for a nonmedical suspension (AR 600-105). Commanders are authorized to suspend nonrated crewmembers (AR 600-106). Commanders should consider flight evaluation board (FEB) proceedings or removal from flight status for crewmembers who demonstrate a pattern of failure to maintain currency or proficiency. The commander with FEB convening authority may suspend an aviator up to 180 days concurrently (AR 600-105) and must ensure actions affecting pay are documented and coordinated with the appropriate agency.

3-46. Unit Aircraft Qualification. While the performing aircraft qualification training at the unit, the most current approved USAACE POI and FTG will be used. The total course time will not exceed 90 days nor vary from the published POI/FTG training/flight hours by more than 10 percent. Nonstandard aircraft qualification will be conducted using the most current approved USAACE POI/FTG (AR 95-1).
READINESS LEVEL 2 MISSION TRAINING

3-47. Crewmembers designated RL 2 train in the mission and additional tasks selected by the commander to support the unit's METL. Mission training is a transition stage in that it provides individuals with the opportunity to gain an initial level of proficiency in the unit’s missions. Crewmembers complete mission training by demonstrating proficiency in each flight mode and condition specified. The more demanding mode does not apply to RL progression training. Mission training is primarily conducted by the unit standardization personnel (to include UTs), but it is still the responsibility of the platoon leader to manage and oversee this training. This T-level prepares individual crewmembers to become members of battle-rostered crews ready to conduct collective training.

- Enter the name, rank, and duty position of the SP/IP/IE/ME/UT/SI/FI who completed the final training for any RL progression training entries on the DA Form 7122-R.
- Local directives and SOPs may add tasks to be trained in addition to ATM flight tasks. Any additional training/evaluation tasks must be annotated on the crewmember’s CTL.
- Aviators designated as MP or ME in a valid TOE/TDA position must demonstrate proficiency in the ATM required maintenance tasks before advancing to RL 1.

Note. This requirement may be extended by the ATP commander for a maximum of 180 calendar days if an ME is not available to conduct the training and evaluation. The aviator will not perform MP/ME duties until evaluated by an ME. When an ME is not available at the gaining unit, the ATP commander may coordinate with DES to conduct the end of course evaluation to satisfy this requirement. This evaluation will be entered on the DA Form 7122-R upon completion.

- All crewmembers must complete a local area flight orientation in each mode of flight authorized by the commander on the CTL before progressing to RL 1.
- RCM designated RL 2 may fly with a PC and perform all tasks in each mode of flight as authorized on the CTL previously evaluated as “S” (satisfactory) by an IP or SP.
- NCM designated RL 2 may fly with a RL 1 flight engineer (FE)/crew chief (CE) and perform all tasks in each mode of flight as authorized on the CTL previously evaluated as “S” (satisfactory) by an IP/SP/FI/SI.
- RL 2 crewmembers may train with a UT for mission training but must be evaluated by an SP/IP or SI/FI, as appropriate, before designation to RL 1.
- Crewmembers progress from RL 2 by demonstrating proficiency in all selected mission, maintenance, and additional tasks and appropriate academic subject areas to an SP/IP/IE/ME/SI/FI, as appropriate. This requirement is not to imply a written test is required.
- Crewmembers maybe redesignated RL 2 for training deficiency. Only those mission tasks found deficient are required to be trained and evaluated in the mode of flight the failure occurred. Upon completion of the training, crewmembers are redesignated RL 1.
- When crewmembers fail to progress from RL 2 the commander must investigate, determine the reason, and take appropriate action according to AR 95-1.

READINESS LEVEL 1 CONTINUATION TRAINING—(INDIVIDUAL AND CREW PROFICIENCY SUSTAINMENT) COLLECTIVE TRAINING

3-48. RL 1 crewmembers have completed RL progression training. These crewmembers are trained to the proficiency level necessary to conduct collective training as a member of an aircrew. Aircrews train to collective proficiency on unit collective mission tasks that support the unit’s METL. When battle-rostering crews, commanders should—

- Consider the individual aviator’s total aviation experience, flight, and unit experience.
- Evaluate the individual’s personality and maturity.
• Understand the implications of prolonged battle-rostering. Without consistent evaluation, battle-rostering may lead to crew complacency, overconfidence, implicit coordination behaviors, and nonstandard procedures.
• Understand that battle-rostering is most beneficial when used for short periods, such as gunnery training, during training exercises, and during operational deployments (including combat).

NONSTANDARD AIRCRAFT (AR 95-1)

3-49. Commanders must develop a training program for those crewmembers that fly nonstandard aircraft. This training program will follow the guidelines and training concepts outlined in this publication and AR 95-1.

• The training program must be approved by the appropriate Army command and the training syllabus must be approved by USAACE.
• The task list developed for each duty position must establish minimum task iteration, flying-hour, and evaluation requirements. Crewmembers flying such aircraft are not covered by CATS.
• Commanders will determine the frequency and number of task iterations required to maintain crewmember proficiency.
• Crewmembers must successfully complete ACT-E requirements prior to progressing to RL 1.

ENGINEERING FLIGHT TEST PILOTS

3-50. Engineering flight test pilots perform duties in research and development aircraft or projects as directed by their commander. They must meet all APART requirements in category and will receive continuation training as outlined in the appropriate ATM.

3-51. Engineering flight test pilots also must satisfactorily complete tasks contained in a unit-developed, Army command approved task list, and the annual hands-on performance test component of the APART. The commander will develop task lists for each aircraft category. Tasks accomplished in any aircraft within a category will count toward completion of the task list. As a minimum, the task list will include base tasks (1000-series) selected from the appropriate aircraft ATM. The commander will specify training and evaluation requirements in the unit SOP.

3-52. In addition, engineering flight test pilots will fly 48 hours annually in category and 24 hours in their alternate aircraft.

DEPARTMENT OF THE ARMY CIVILIANS, UNITED STATE ARMY RESERVE MILITARY TECHNICIANS, AND ARMY NATIONAL GUARD TECHNICIANS

3-53. DACs, U.S. Army Reserve (USAR) military technicians, and ARNG technicians must comply with the appropriate ATM for the initial aircraft qualification, annual standardization flight evaluation, instrument evaluation, and MP/ME evaluation, if applicable. DAC aviators instructing USAACE-approved POIs must accomplish all APART requirements specified in the appropriate ATM. The flight evaluations are conducted during a designated quarter and include only those tasks necessary to meet the requirements in the individual's job description. Flight evaluation(s) for alternate or additional aircraft need not be conducted during the same quarter as the primary aircraft. In addition, USAR military technicians and ARNG technicians must—

• Satisfactorily complete the annual hands-on performance test components of the APART and the operator's manual examination by the end of the APART period.
• Comply with all ATM requirements for aircraft designated by their military commander or technician supervisor.
COMMANDER’S CERTIFICATION

3-54. The commander’s certification is the final cross check to ensure that an individual’s ATP requirements have been met. ATP commanders must annually certify each crewmember's DA Form 759. The commander will annotate whether the crewmember has or has not completed individual ATP requirements or qualifications. If a crewmember did not complete the requirements, the commander must include the reason. (The appropriate remarks are in FM 3-04.300.) If requirements were not met, commanders will investigate according to AR 95-1, take action, and ensure events are posted to the DA Forms 7122-R and 759 during the annual closeout. Investigations may result in removal from flight status for NCMs, extension, waiver, suspension, or FEB.

EXTENSIONS, WAIVERS, AND SUSPENSIONS

3-55. Extensions. Extensions will be according to AR 95-1 and entered on DA Forms 7122-R and 759, as appropriate. Extensions will specify all requirements on the DA Form 7122-R and be signed by the appropriate authority. Once the extended requirements have been completed, an entry on the DA Form 7122-R is required. If an extension exceeds the close out date, it will be annotated on the DA Form 759. Once the extended requirements have been completed, an entry is required on DA Form 7122-R and the DA Form 759 during the next closeout.

3-56. Waivers. Waivers will be according to AR 95-1, entered on DA Form 7122-R, and annotated on the DA Form 759 during the annual closeout. Waivers will specify all waived requirements on the DA Form 7122-R and be signed by the appropriate waiver authority. Waivers in memorandum format do not require an additional signature on the DA Form 7122-R; however, they will specify the waiver authority and specify all waived requirements. Waivers will be retained in the miscellaneous section of the IATF until annotated on the DA Form 759 during the next closeout.

3-57. Suspensions. Suspensions for RCMs will be according to AR 600-105. Removal from flight status for NCMs will be according AR 600-106. Commanders will coordinate with finance regarding suspensions which deal with crewmember’s pay.

- Medical suspension. Are prescribed by AR 600-105 and annotated on the DA Forms 7122-R and 759.
- Nonmedical suspension. The ATP commander may impose a nonmedical suspension not to exceed 30 days and will be annotated on the DA Forms 7122-R and 759. Nonmedical suspension for RCMs in excess of 30 days must be according to AR 600-105.
- Suspensions for NCMs for disciplinary, medical, administrative, or performance will be processed according to AR 600-106 and annotated on the DA Forms 7122-R and 759.

AIRCREW TRAINING PROGRAM FORMS AND RECORDS

3-58. The ATP records system provides commanders with a comprehensive performance record on each crewmember in their unit. Examples of completed ATP forms with instructions are provided in appendix A.

INDIVIDUAL AIRCREW TRAINING FOLDER

3-59. Commanders will ensure that an IATF is prepared and maintained for each RCM and NCM in an operational flying position and noncrewmembers performing crewmember duties according to AR 600-106, whether assigned or attached to their unit.

DEPARTMENT OF THE ARMY FORM 7120-R SERIES

3-60. Commanders will use DA Form 7120-R, DA Form 7120-1-R (Crew Member Task Performance and Evaluation Requirements), DA Form 7120-2-R (Crew Member Task Performance and Evaluation Requirements Continuation Sheet), and DA Form 7120-3-R (Crew Member Task Performance and Evaluation Requirements Remarks and Certification) to inform crewmembers of all ATP requirements. The
CTL is a working document. A separate DA Form 7120-R series is required for additional, alternate, and aircraft not defined as similar by the appropriate ATM in which the crewmember performs duties. Experimental Pilots may separate DA Form 7120-R series by category.

3-61. All RL 1 base tasks (and maintenance tasks for personnel authorized to perform MP or ME duties on the DA Form 7120-R) are as outlined in the appropriate ATM. Aviators are prohibited from performing any other tasks or maneuvers not listed on their CTL, unless authorized by their commander. Commanders should use, at a minimum, the following authorization criteria:
- Consider crew qualifications and experience.
- Perform a risk assessment.
- Weigh the risk versus the reward.
- Decide if other support is required.
- Brief crew on a DA Form 5484 (Mission Schedule/Brief)/DA Form 7525 (UAS Mission Schedule/Brief), as appropriate.

Department of the Army Form 7120-R

3-62. Only those aircraft (or aircraft not defined as similar by the appropriate ATM) in which a crewmember is qualified and expected to perform duties will be listed DA Form 7120-R.

3-63. DA Form 7120-R is used to designate crewmember authorized flight duties and stations, annual and semiannual flying-hour and evaluation requirements for crewmembers.

3-64. The commander signs and dates the form authorizing the crewmember to perform flight duties at the indicated crew stations prior to the crewmember's first flight. The crewmember will sign and date the CTL to certify he has been briefed on and understands the ATP requirements prior to the first flight. Upon initial RL 1 designation, the crewmember will be briefed on task iteration, flying-hour minimums, evaluation requirements and all other requirements incurred by this designation.

Department Army Forms 7120-1-R and 7120-2-R

3-65. Commanders use DA Form 7120-1-R to list task performance and evaluation requirements. Other commander designated ATP iteration requirements may also be listed, such as collective training tasks, simulator scenarios, situation training exercises (STXs). DA Form 7120-2-R is a continuation of DA Form 7120-1-R if additional space is required.

Department of the Army Form 7120-3-R

3-66. Use this form to record all remaining ATP requirements not listed elsewhere on the CTL and any additional information relating to the crewmember's ATP. The crewmember will certify completion of all ATP requirements no later than the last day of their birth month.

Department of the Army Form 7122-R

3-67. DA Form 7122-R is a permanent record of significant events in an individual crewmember's aviation career. Because of the permanent nature of this document, exercise care when making entries. When the crewmember leaves the unit, forward all DA Forms 7122-R with the IATF. The losing unit will retain a photocopy of the DA Forms 7122-R for a period of 1 year after the crewmember departs.

DEPARTMENT OF THE ARMY FORM 4507-R

3-68. Use this form, along with DA Form 4507-1-R (Maneuver/Procedure Grade Slip) and DA Form 4507-2-R (Continuation Comment Slip) for training programs or evaluations that require a series of flights. Uses may include, but are not limited to qualification, refresher, and PC evaluations. DA Form 4507-R series forms will be retained in the IATF until the completion of the training and a summary of the event is entered on the DA Form 7122-R.
This page intentionally left blank.
Chapter 4

Training Requirements

COMMANDER’S TASK LIST

4-1. Brigade-level commanders evaluate each duty position to determine how it can best support the unit's METL. After designating each position FAC 1, FAC 2, or FAC 3, the ATP commander develops a task list to support the duty position. The CTL consists of the DA Form 7120-R series and its enclosures. It is established whenever a crewmember is integrated into a unit’s ATP. The commander’s task list is a written agreement between the commander and the crewmember. The requirements established by the CTL are tailored to the proficiency training needs of the individual crewmember. It designates the authorized duties and flight stations the crewmember may occupy and the hours, tasks, iterations, evaluation requirements, and responsibilities the crewmember must accomplish during the training year.

MULTIPLE AIRCRAFT DESIGNATIONS

4-2. Commanders designate primary, additional, and/or alternate aircraft for crewmembers. Crewmembers must perform the appropriate task iteration, fly the appropriate flying hours, and complete APART requirements in the primary, and (if applicable) any additional or alternate aircraft according to AR 95-1.

- Primary aircraft. The aircraft mission type/design (H-60, H-64, C-12) designated by the commander or required by the TOE or TDA position.
- Series grouped aircraft. Aircraft grouped together based on complexity of the pilot to aircraft interface (analog instruments and glass cockpit and avionics architecture) as defined by the ATM for currency. Task, iteration, flying hour, and evaluation requirements will be specified in the ATM and included on one CTL (such as UH-60A/UH-60L/search and rescue/medical evacuation helicopter (HH)-60A/HH-60L).
- Similar aircraft. Aircraft defined as having similar operating and handling characteristics. Aircraft not listed within a series group but share one ATM may be included on one CTL (appendix A). (For example: All H-60-series aircraft listed in TC 1-237 are similar.)
- Additional aircraft. Aircraft in the same category (fixed- or rotary-wing) as the primary aircraft, but does not meet similar aircraft requirements. Additional aircraft will have a separate CTL (such as CH-47F and UH-60L).
- Alternate aircraft. Aircraft is in the opposite category of the primary aircraft and will have a separate CTL (such as CH-47F and C-12).

Note. Crewmembers will complete the ACT-E sustainment module for their primary aircraft. The commander may require that the aviator complete an additional module for an assigned alternate aircraft.

Note. Refer to paragraph 2-4 for description of aircraft basic mission (class/type), modified mission, aircraft design (model) and aircraft series.

4-3. Commanders should consider risk versus reward when assigning similar, additional, or alternate aircraft to RCMs flying highly complex, advanced aircraft.
AIRCREW TRAINING MANUAL TASKS

4-4. All tasks in the ATMs have a ten-digit TRADOC number. For ease of identification, the last four digits of this number are 1000-, 2000-, or 4000-series indicating they are base, mission, or maintenance tasks, respectively.

4-5. All 1000-series tasks are base tasks. A base task is common to all RCMs or NCMs authorized to perform duties in a particular aircraft, regardless of FAC level, unit METL or duty position. Base tasks cover those baseline skills, knowledge, and procedures necessary to operate the aircraft and selected installed equipment.

4-6. All 2000-series tasks are mission tasks. Mission tasks are selected by the commander to support the unit METL. Commanders may further tailor the selection of mission tasks to match a crewmember’s duty position. Mission tasks also standardize conditions, standards, performance steps and evaluation requirements of equipment not installed on all aircraft of a series.

4-7. Commanders may develop additional tasks for inclusion on the CTL, as needed, to accomplish the unit’s mission (see appendix B). The commander assigns these tasks a 3000-series number and lists them separately on the CTL. When an additional task is developed by the unit, the commander must perform a risk analysis for performance of the task, and determine training required for crewmembers to attain proficiency in the task. The additional tasks must include—

- Task number.
- Title of the task.
- Conditions under which the task is performed.
- Standards for performance of the task.
- Description of how the task is performed.
- Considerations for performance of the task (such as environmental, safety and crew coordination).
- Training/evaluation requirements.

4-8. All 4000-series tasks are MP/ME/FCP tasks. These maintenance tasks cover those procedures, knowledge, and skills required to perform maintenance and functional test flights. Refer to AR 95-1 for definitions and responsibilities of the FCP.

PERFORMANCE AND TECHNICAL TASKS

4-9. Performance tasks measure the crewmember’s ability to perform, manipulate the controls, and respond to tasks that are affected by the conditions and mode of flight. These tasks are significantly affected by the conditions and mode of flight; the condition and mode of flight under which the task must be performed is specified.

4-10. Technical tasks measure the crewmember’s ability to plan, preflight, brief, run-up, or operate specific onboard systems, sensors, or avionics in flight or on the ground. These tasks are not significantly affected by the condition and mode of flight and may be performed or evaluated in any condition or mode.

TASK AND ITERATION REQUIREMENTS FOR PRIMARY, ADDITIONAL, AND ALTERNATE AIRCRAFT

4-11. During the training year, each RL 1 crewmember must perform a minimum of one iteration of each base task as outlined in the appropriate ATM. RL 1 crewmembers must also perform a minimum of one iteration of each mission and additional task, in each of the flight modes and conditions indicated on the CTL. Additionally, RL 1 crewmembers must perform a minimum of one iteration of each mission and additional task, in each of the flight modes and conditions indicated on the CTL. FAC 3 aviators must perform a minimum of one iteration of each instrument task on the CTL as designated by the commander.

4-12. If an RCM is authorized to perform MP/FCP/ME duties, the maintenance test pilot/functional check pilot tasks will be performed according to the appropriate ATM. Commanders are not authorized to delete
any maintenance tasks or decrease annual task iterations listed in the appropriate ATM. Commanders may increase MP/ME annual task iterations as required.

4-13. The commander must specify task iteration and evaluation requirements under each applicable mode of flight for all performance tasks or other requirements listed on DA Forms 7120-1-R and 7120-2-R of an RL 1 or FAC 3 crewmember’s CTL. Ensure no conflict exists with—

- Established minimums, restrictions and evaluation requirements of tasks outlined in the appropriate ATM.
- The crewmember’s authorized flight duties/stations as designated on their DA Form 7120-R.

Note. Placing an “E” next to the minimum number of iterations designates mandatory evaluation of that task under that mode of flight.

TASK ITERATIONS FOR INITIAL DESIGNATION

4-14. When a crewmember is progressed to RL 1 during their APART period, the crewmember has no task/iteration requirements except those designated by the commander.

TASK ITERATION CONSIDERATIONS FOR SIMILAR AIRCRAFT

4-15. Multiple aircraft (considered to be similar according to the appropriate ATM) may be listed on a single CTL. For similar aircraft tasks common to the aircraft listed on the CTL that are performed in one aircraft, will satisfy iteration requirements of the other aircraft listed. If a task is exclusive to a series, the currency and evaluation requirements established in the appropriate ATM for that task will apply. Task iteration, flying hour, and evaluation requirements flown in an aircraft defined as similar may be credited toward completion of requirements as defined by the appropriate ATM.

FLYING-HOUR REQUIREMENTS

MINIMUM HOURS

4-16. The minimum hours required for a crewmember's primary aircraft requirements are in the appropriate ATM. Do not confuse the minimum hours indicated in the ATM as the definitive factor for determining aircrew proficiency. They are the minimum hours a crewmember will fly during continuation training. Prolonged periods of flight inactivity may reduce a crewmember’s proficiency, even if the total minimum hour requirement is met.

FLYING HOUR/SIMULATOR REPROGRAMMING

4-17. Commanders may adjust FAC 1 or FAC 2 crewmember semiannual ATM flying-hour requirements before the first semiannual training period begins. They may authorize RCMs to fly up to 65 percent of their annual requirements in one semiannual period but not less than 35 percent in the other semiannual period. This will not change the unit's annual FHP or reduce a crewmember's annual flying-hour requirements. For example, if the commander knows a crewmember will be partially unavailable in one semiannual period, the commander could allow that crewmembers to fly up to 65 percent of the annual flight hours required in one semiannual period and 35 percent in the other. However, the minimum for the second semiannual period may not be less than 35 percent of the annual requirement without a waiver.

4-18. A crewmember removed from RL 1 for a training deficiency must still meet all flying-hour requirements.

FLYING HOUR/SIMULATOR PRORATING

4-19. Prorated minimums will be one-sixth of the semiannual requirements and/or one-twelfth of the annual requirements for each full month remaining in the training period. When reassigned to other than a
FAC 3 position within the same unit, prorate the flying hours/simulator the RCM is responsible for prior to reassignment and add them to the prorated hours the RCM is responsible for in the new FAC position. The RCM will complete this adjusted total flight hours/simulator prior to the end of their ATP period. Flying hours/simulator minimums for a crewmembers primary aircraft may be prorated when they are—

- Newly designated RL 1 or FAC 3.
- Having the primary aircraft redesignated.
- Changing duty position, which involves a change in FAC level in other than similar aircraft as defined by the appropriate ATM.
- When assigned to a FAC 3 duty position from a FAC 1 or FAC 2 position, previous aircraft flying hour requirements do not apply; however, SFTS hours do apply.

Other Prorating Adjustments

4-20. Reduce flying-hour minimums by 1 month for each 30-day period that the crewmember was unable to fly. Days unable to fly, in different absence categories, may be added together for 30-day totals. Concurrent days will not be added together. An example of concurrent days would be if a crewmember, medically grounded for 30 days is sent TDY for 20 of those 30 days. Only 30 days could be prorated. At the end of the training period, add the total number of days the crewmember was unable to fly the aircraft/simulator due to the following:

- TDY or deployment to a location where the crewmember is unable to fly.
- Medical or nonmedical suspension from flight.
- Grounding of aircraft by Headquarters, Department of the Army.
- Leave approved by the commander (RC-authorized absences by the commander).
- Aircraft nonavailability due to movement to deployment, movement to redeployment, or aircraft preset/reset. Preset/reset requirements only apply if 50 percent of the unit’s aircraft are not available. This must be annotated on the DA Form 7122-R and should coincide with the brigade commander’s “start training date” required by AR 95-1.

Flying-Hour Requirements for Additional and Alternate Aircraft

4-21. There are no minimum flying-hour requirements for additional or alternate aircraft. Commanders may designate a minimum flying-hour requirement to include simulator, if available to meet mission requirements. The crewmember must maintain aircraft currency and the commander must specify flying-hour, task iteration, and evaluation requirements based on the unit mission to ensure aviators are proficient in ATM tasks. NVG currency may be completed in category as determined by the commander as specified in this ATM.

Aircraft Qualification

Aircraft Qualification and Mission Equipment Training

4-22. Prerequisites and training requirements for aircraft qualification of rated and nonrated crewmembers are in AR 95-1, all appropriate supplements to AR 95-1, and the appropriate ATM. The flight and academic instruction described in the appropriate USAACE POI are the minimum training requirements. Units conducting series qualifications will do so according to the appropriate ATM.

4-23. The commander will establish hour, task, and iteration requirements for the RCM to maintain basic skills when the time between aircraft qualification training and mission training exceeds 30 consecutive days. The RCM may log pilot time if an entry is made to the DA Forms 7120-R and 759 to indicate such authority pending completion of mission equipment training.

4-24. Total aircraft qualification will not be awarded until the RCM successfully completes the flight and academic training. If the RCM does not complete the mission equipment training within the 180 consecutive days, the commander will take appropriate action according to AR 95-1. SP/IP/IE/ME/MP/SI/FIs qualified in similar aircraft defined in AR 95-1 are exempt from mission
Training Requirements

equipment training except when their job descriptions require knowledge of specific mission equipment. (DACs are exempt from mission equipment training, except when their job descriptions require knowledge of specific mission equipment).

Rated Crewmember Prerequisites and Qualification Requirements

4-25. During qualification training, an IP, or SP as appropriate, will occupy a crew position with immediate access to the aircraft flight controls at all times. This requirement does not apply to RC-12 mission equipment qualification conducted at the United States Army Intelligence Center (USAIC) when the RCM being qualified on the mission equipment is qualified and current in that particular aircraft.

Prerequisites

4-26. The RCM must meet the requirements of AR 95-1.

Qualification Requirements

4-27. Individuals are qualified in an aircraft when they satisfactorily complete the specific aircraft qualification course conducted by USAACE, National Guard (NG) Army Aviation Training Site (AATS), or—

- Complete the academic and flight instruction for the specific aircraft outlined in the appropriate USAACE–approved POI.
- Successfully complete a RCM flight evaluation, given by an SP/IP, as outlined in the appropriate USAACE POI.
- Successfully complete an aircraft operator’s manual examination with a minimum grade of 90 percent.

Note. RC RCMs must complete the basic qualification training within 90 consecutive days or the training day requirements of the appropriate USAACE or AATS POI, whichever is longer. Commanders must establish hour, task, and iteration requirements for the RCM to maintain basic skills when the time between aircraft qualification training and instrument training exceeds 30 consecutive days.

4-28. IP, IE, MP, ME, and FCP qualification must be IAW AR-95-1 and the appropriate USAACE POI. Initial validation of an aviator’s qualification following a military occupational specialty (MOS) producing course will be conducted in the aircraft upon returning from that course and in the aircraft at each new duty station.

Note. Recent graduates of the MP/FCP course will not perform MP/FCP duties until progressed to RL 1 and completion of a maintenance test flight/functional check flight evaluation performed by an ME. When MEs are not available at the gaining unit, the ATP commander may coordinate with DES to conduct the end of course evaluation to satisfy this requirement. This evaluation will be entered on the DA Form 7122-R. This requirement does not apply to fixed-wing MP/MEs who are evaluated by designated IPs or SPs.

4-29. Maintenance test pilots, functional check pilots, maintenance test flight examiners, and functional check pilot evaluators in qualification training must meet the requirements of AR 95-1 and the appropriate ATM. Maintenance tasks required for qualification as an MP/FCP/ME will be trained and evaluated by an ME as appropriate. This requirement does not apply to fixed-wing MP/MEs who are evaluated by designated IPs or SPs.
NONRATED CREWMEMBER PREREQUISITES AND QUALIFICATION REQUIREMENTS

Flight Engineer/Crew Chief/Medical Officer

4-30. An FE, CE, flight medic, or medical officer performs duties essential to the operation of cargo or utility helicopters or fixed-wing aircraft.

Prerequisites

4-31. Individuals must be MOS qualified.

Qualification Requirements

4-32. Individuals must be selected by the commander for duty as a flight engineer, crew chief, or medical officer and placed on flight status. In addition, they must satisfactorily complete all qualification requirements stated in the appropriate ATM or approved POI.

Other Nonrated Crewmembers

4-33. Other NCMs perform crew duties essential to the mission; for example, door gunners are essential to the utility mission in combat.

Prerequisites

4-34. Individuals must be MOS-qualified and meet the criteria specified in AR 600-106.

Qualification Requirements

4-35. Individuals must be selected by the commander for the duties to be performed and placed on flight status. In addition, they must first satisfactorily complete all qualification requirements stated in the appropriate ATM or approved POI.

Nonrated Crewmembers Instructor and Noncrewmembers Standardization Instructor

4-36. The FI or SI must meet the requirements stated in AR 95-1.

AIRCREW TRAINING PROGRAM REQUIREMENTS

4-37. The commander establishes an ATP to develop crew proficiency in accomplishing the unit’s METL. Crewmembers who fail to meet the minimum requirements in their primary, additional, or alternate aircraft will be processed according to AR 95-1.

Note. NGB requires that each state provide the NGB-Aviation and Safety division with a monthly report of crewmembers not meeting APART requirements. If a crewmember does not meet an ATP requirement for any reason, report each requirement not met on the ATP failure report.

READINESS LEVEL 1 CONTINUATION/COLLECTIVE TRAINING

4-38. Crewmembers designated RL 1 must complete the following ATP requirements as established by the commander and listed on the CTL:

- Semiannual and annual task iterations in all modes of flight designated by the commander on the CTL.
- Semiannual and annual flying hour minimums designated by the commander on the CTL.
- Annual standardization flight evaluation.
- Annual instrument flight evaluation. (RCM only)
Training Requirements

- Annual MP/FCP/ME flight evaluation. (RCM only, if required)
- Annual NVG flight evaluation. (if required)
- Annual operator’s manual examination.
- Annual ACT-E sustainment module for their primary aircraft.
- All other requirements designated by the commander to be completed as part of the ATP such as AMS training, combat identification (CID) training, CBRN training, hypobaric refresher training, deck landing operations training, and so forth.

Note. Crewmembers will be processed according to AR 95-1 for failure to meet any of the above ATP requirements.

Note. Crewmembers receive credit for ACT-E sustainment training, operator’s manual examination, and APART and NVG tasks/evaluations completed during RL progression training if they were evaluated satisfactory within their corresponding 3-month annual evaluation window. Additional, commander-designated ATP requirements met prior to RL 1 designation may be credited at the discretion of the commander.

AIRCREW TRAINING PROGRAM REQUIREMENTS WHEN REMOVED FROM READINESS LEVEL 1 OR FLIGHT ACTIVITY CODE 3

4-39. If the crewmember is removed from RL 1 or FAC 3, the following apply:
- Training Deficiency. A crewmember removed from RL 1 for a training deficiency must still meet all RL 1 ATP requirements. ATP requirements met while RL 2 or RL 3 will be applied to RL 1 requirements.
- Other than a Training Deficiency. A crewmember has until the end of the training period to complete ATP requirements. If a crewmember is removed from RL 1 or FAC 3 for other than a training deficiency before the end of the training period (for example, a medical grounding or permanent change of station [PCS] departure), their ATP requirements no longer apply.

RATED CREWMEMBERS (FLIGHT ACTIVITY CATEGORY 3)

4-40. RCMs designated FAC 3 will perform all of their training in the simulator designated by the commander. FAC 3 RCMs must complete the following requirements:
- A minimum of one iteration of each instrument task listed in the appropriate ATM.
- Annual instrument flight evaluation.
- Annual operator’s manual examination.
- Annual ACT-E sustainment module.
- Gunnery Table V for attack/reconnaissance aircrew with compatible simulators.

NIGHT VISION GOGGLE TRAINING

4-41. The Department of the Army requires that all active Army and RC rotary-wing aviators in TOE and TDA positions be NVG qualified. Waiver authority for this requirement will not be delegated below the Army command level.

4-42. NVG training is vital to the success and survival of aviation units on the battlefield. All NVG qualification, refresher, RL progression, and proficiency training will be conducted according to this section and the appropriate ATM.
4-43. Initial NVG qualification will be conducted at the USAACE or other DA-approved training site, according to the USAACE approved POI. If units conduct initial NVG qualification training, the USAACE NVG training support plan (TSP) shall be used. The USAACE NVG TSP may be obtained by writing to the Commander, USAACE, ATTN: ATZQ-ATB-NS, Fort Rucker, AL 36362-5000 or by electronic download from https://www.us.army.mil/suite/collaboration/kc_V.do?load=true&kcid=5826250.

4-44. Units will conduct initial NVG aircraft qualification training according to this chapter and the appropriate ATM. Crewmembers must be NVG qualified in each mission, type, and design aircraft in which they perform NVG duties. RCMs must occupy a crew position with access to the flight controls in the aircraft while wearing NVG and demonstrate proficiency in the NVG tasks to an NVG SP or IP. NCMs must demonstrate proficiency in NVG tasks in the aircraft while wearing NVG to an NVG IP, SP, FI, or SI. The evaluation may be continual. The NVG column in the appropriate ATM task list identifies the mandatory tasks for evaluation.

4-45. Before conducting NVG training, units must have written NVG SOP addressing specific crewmember requirements not specified in the appropriate ATM or as outlined appendix E. Units must document aircrew NVG training according to chapter 3 of this publication.

4-46. SPs, IPs, UTs, SIs, and FIs, as appropriate, will conduct the flight training.

Note. The trainer or evaluator will occupy a crew position without access to the flight controls while conducting NCM training or evaluations.

4-47. Crewmembers must undergo NVG refresher training in aircraft for which they have not completed a 1-hour NVG flight during the previous 180 consecutive days. This requirement applies to primary, alternate and additional aircraft. Crewmembers undergoing refresher training are designated NVG RL 3.

4-48. NVG RL progression will be according to chapter 3 and the appropriate ATM. Crewmembers will not perform mission or additional tasks until RL 3 base task training for qualification and refresher training are complete, except for tasks 2081, 2086, and 2092.

4-49. NVG continuation training requirements will be according to chapter 3 and the appropriate ATM. NVG RL 1 RCMs will have a minimum requirement of 9.0 hours NVG semiannually in their primary aircraft.

4-50. Annual NVG evaluation will be IAW AR-95-1 and the appropriate ATM.

4-51. UH-1, UH-60, and CH-47 single-ship operations involving the use of NVG require at least three crewmembers that are NVG current and qualified in the aircraft. Exceptions are operations conducted at USAACE or NGB centralized training bases WAATS and EAATS according to or in support of USAACE-approved POIs.

Note. Rated aviators occupying crew positions without access to the flight controls satisfy the three-crewmember requirement.

4-52. The two aviators flying UH-1, UH-60, and CH-47 aircraft during aided multiaircraft operations will be supplemented with additional crewmembers as indicated below:

- UH-1 and UH-60. These aircraft require one additional crewmember wearing NVG (for a minimum crew of three). If both sides of the aircraft cannot be observed, a fourth crewmember wearing NVG must be added, if necessary.
- CH-47 series. These aircraft require two qualified and current NCMs wearing NVG (for a minimum crew of four). The PC will brief all crewmembers on crew duties and assign each crewmember a sector for visual observation.
ADDITIONAL TRAINING REQUIREMENTS

4-53. The commander may use the CTL to designate additional training requirements that are not ATP requirements IAW AR 95-1, such as AMS, CID, CBRN training, hypobaric refresher training, recognition of combat vehicle (ROCV) and ACT-E.

4-54. Commanders will list any additional aviation training requirements in the ATP portion of the unit SOP and include the conduct of this training in the unit’s short and long-term training plans. A continuing program of academic training is required to ensure RCM and NCM are up to date on new equipment, concepts, tactics, and regulations. Commanders must use every resource available to support this ongoing education.

LOCAL AREA ORIENTATION

4-55. LAO is an important part of the training program for newly assigned crewmembers. It is divided into four general areas—aircrew information reading files (AIRFs), airfield operations and procedures, airfield layout and facilities, and a local area orientation flight.

AIRCREW INFORMATION READING Files

4-56. Aviation units will establish an AIRF. The AIRF should be divided into general and specific functional areas. It should contain reference material on aviation standardization, safety, and armament as well as regulations, directives, SOPs, and other appropriate publications. Units will post information as it is received. Pertinent new information should be maintained in the front section of each general and specific file area until the information expires or is permanently incorporated into the AIRF or the SOP.

AIRFIELD OPERATIONS AND PROCEDURES

4-57. The commander will ensure that crewmembers are given a briefing and tour of all airfield operations facilities. The tour will include the flight planning room (location of maps, Department of Defense [DOD] flight information publications [FLIPs], flight plans, and other flight planning aids), the airfield operations office, and the flight dispatch office. If the weather facility is located on the airfield, it also should be part of the orientation. The briefing will include the items listed below.

- Procedures for—
 - Obtaining notices to airmen (NOTAMs).
 - Obtaining maps, charts, and DOD FLIPs.
 - Filing local and cross-country flight plans.
 - Ensuring operations security of the airfield.
 - Obtaining and servicing aviation life support equipment (ALSE).
 - Obtaining weather information.
 - Obtaining aero-medical evacuation assistance.
 - Authorizing flights outside the local flying area.
 - Obtaining range and restricted area information.
 - Information on local medical facilities, frequencies, and access phone numbers.
 - A review of visual flight rules (VFR) and special VFR requirements for the airfield and local area.
 - A review of instrument flight rules/instrument recovery procedures.
 - A review of local airspace.
• A review of the local area map, to include—
 ■ Navigational aids (NAVAIDs).
 ■ Boundaries.
 ■ Flight corridors.
 ■ Reporting points.
 ■ Airfield security.
 ■ Noise abatement procedures.
 ■ Prominent terrain features.
 ■ Maintenance test flight areas.
 ■ Obstacles or hazards to flight.
 ■ Tactical training and range areas.
 ■ Restricted areas and no-fly areas.
 ■ Airfields, helipads, and frequently used landing zones (LZs).

AIRFIELD LAYOUT AND FACILITIES

4-58. The commander will ensure that crewmembers are given a tour of the airfield area. This tour should include—

• Petroleum, oils, and lubricants facilities.
• Aircraft parking areas.
• Crash rescue facilities.
• Obstacles or hazards to flight.
• NAVAIDs and control facilities.
• Simulation and procedural training devices.
• Organizational and support maintenance areas.

LOCAL AREA ORIENTATION FLIGHT

4-59. Prior to progressing to RL 1, crewmembers must receive a local area orientation in each mode they are authorized to perform duties as designated by the commander (day, night, NVG, NVS). Units may conduct this flight during other training. The commander will determine what orientation items are required for the flight. Items of the orientation, peculiar to the local area, or those that cannot be adequately covered during the ground portion of the orientation, will be pointed out, demonstrated, and/or discussed during the flight. Additionally, deployments by the unit may require local orientations for all crewmembers in the new theater. The orientation flight should include familiarization with local—

• NAVAIDs.
• Boundaries.
• Flight corridors.
• Reporting points.
• Prominent terrain features.
• Noise abatement procedures.
• Maintenance test flight areas.
• Instrument recovery procedures.
• Restricted areas and no-fly areas.
• Tactical training and range areas.
• Airfields, helipads, and frequently used LZs.
• Obstacles or hazards to flight high intensity radio traffic area briefing.
• Aerial gunnery ranges and live-fire areas.
AIRCREW COORDINATION TRAINING-ENHANCED

4-60. ACT-E sustainment training will be completed annually during the crewmember’s APART period. ACT-E is a two part system—qualification and sustainment.

- Part One – Qualification. Rated crewmembers are initially ACT-E qualified at USAACE. All other crewmembers are initially qualified by an ACT-E instructor using the most current USAACE approved qualification course.
- Part two – Sustainment. All crewmembers are required to complete the training each ATP year via the U.S Army Blackboard server at https://ellc.learn.army.mil.

4-61. ACT-E qualification and sustainment training are instructor-led courses that use multimedia in a vignette-based presentation. This form of instruction allows instructors to facilitate free and open discussions, enabling crewmembers to operate more safely and effectively. The point of contact (POC) for the ACT-E courseware and ACT-E issues may be contacted at ruck.acte@conus.army.mil.

4-62. All Active Army and RC, Department of the Army civilian, and contractor RCMs and NCMs will receive ACT-E qualification and sustainment training.

4-63. FAC 1 and FAC 2 crewmembers may not progress to RL 1 until ACT-E qualification is completed.

4-64. All crewmembers will complete the ACT-E sustainment training, led by an ACT-E instructor each ATP year. Commanders should align sustainment training to the crewmember’s APART period with the training to be completed by the last day of the crewmember’s birth month. Commanders must ensure that the crewmember will not exceed 15 consecutive months without having completed ACT-E sustainment or qualification training so the crewmember receives ACT-E training every ATP year.

4-65. RL 1 and FAC 3 crewmembers that fail to complete ACT-E training by the end of their APART period will be restricted from performing flight duties until the requirement is completed.

4-66. ACT-E qualified instructors will submit information for enrollment into the ACT-E courseware site per the procedure described at: https://training.rucker.army.mil/protected/ACT_E/ACTE.html. Once approved, ACT-E initial qualification and sustainment training may be accessed via the U.S. Army “Blackboard” server at https://ellc.learn.army.mil.

4-67. The following standardization personnel (SP/IP/IE/SI/FI) are authorized to conduct ACT-E training as an ACT-E instructor:

- Standardization personnel (SP/IP/IE/SI/FI), upon completion of an USAACE-approved IP course or ACSI course.
- Standardization personnel (SP/IP/IE/SI/FI) who were previously instructor qualified to teach ACT or ACT-E qualification training.
- Current and qualified ACT-E instructors may also qualify other standardization personnel (SP/IP/IE/SI/FI) as ACT-E instructors.

4-68. Instructor qualified RCMs may conduct initial ACT-E qualification, sustainment, and instructor qualification training for RCMs, NCMs, and unmanned aircraft system (UAS) personnel. Instructor qualified NCMs may conduct initial ACT-E qualification training for NCMs only.

4-69. ACT-E initial qualification, trainer qualification, and annual sustainment training will be annotated on the individual's DA Form 7122-R as an event and in the remarks section of the individual's DA Form 759 during the annual close-out.
ENVIRONMENTAL TRAINING

4-70. In their SOP, aviation unit’s will—

- Explain the effects of the environment on the unit's flight operations.
- Establish a comprehensive academic and flight training program that develops and sustains crewmember proficiency in that environment.
- Ensure that the training has been satisfactorily completed before the crewmember performs flight operations in the unique environment as described in FM 3.04-203.

AVIATION MISSION SURVIVABILITY TRAINING

4-71. An AMS training program will be established in writing by commanders to train crewmembers on AMS systems and employment and will include academic, flight, and if applicable, simulation training. AMS academic training programs will include aircraft survivability equipment (ASE), threat capabilities, airspace deconfliction procedures, and survivability TTP. Commanders will designate appropriate training and evaluation requirements in their SOP and on the individuals DA Form 7120-R series of forms. Units without assigned ASE may use alternate ASE training programs and devices approved by their Army command.

4-72. The AMS training program reinforces the skills of the individual, crew, and unit. The program provides training that realistically reflects the full spectrum of electronic warfare, based on applicable equipment and expected areas of deployment. Individual, crew, and collective AMS training requirements are outlined below.

- Annual ASE academic training. CBAT meets the minimum requirement for ASE academic training for installed ASE. The commander may specify additional ASE training requirements. Completion of CBAT training will be documented on DA Form 7122-R.
 - Rated crewmember. Commanders will specify CBAT requirements for RCMs on the DA Form 7120-3-R for each ASE system that is installed or commonly used on the unit’s assigned aircraft.
 - Nonrated crewmember. Commanders will specify CBAT requirements for NCMs on the DA Form 7120-3-R for each installed ASE system that they participate in operating.
- Other AMS academic training. Crewmembers will receive annual academic training in threat capabilities, airspace deconfliction procedures, and approved survivability TTP. Annual AMS academic training requirements will be annotated on the DA Form 7120-3-R. Completion of AMS academic training is certified by the crewmember at the end of the ATP year on DA Form 7120-3-R.
- Annual ASE flight training. ASE flight training is accomplished according to applicable ATM tasks and any additional 3000-series tasks designated by the commander. Maximum use of existing electronic warfare (EW) ranges is recommended.
- AMS crew simulator requirements. Aircraft crew simulator scenarios develop and instill positive crew reaction and confidence in ASE operations. Tactical unit commanders with aircraft that have a compatible simulator will develop and establish simulator training scenarios that incorporate radar, infrared (IR), electro-optical (EO), and/or other appropriate threats as part of their aviation mission survivability program. ASE scenarios enable aircrews to train on the appropriate ASE, actions on contact, and evasive maneuver task standards for their aircraft. Crew simulator scenarios will be developed to include the unit’s standard crew brief format. RCM with 4 or more simulator hour minimums on the DA Form 7120-R must complete a minimum of two ASE scenario iterations during the annual APART period. The commander will outline the annual ASE scenario iteration requirements on the DA Form 7120-1-R.
- AMS collective simulator requirements. Aircraft collective simulator scenarios develop and instill positive crew reaction and confidence in collective aircraft mission survivability TTP. Commanders with a collective aircraft trainer at their installation will develop and establish collective simulator training scenarios that incorporate radar, IR, EO, and/or other appropriate
threats as part of their aviation mission survivability program. Collective simulator scenarios will be developed to include a standard operations order format. Collective simulator scenarios will train to the appropriate mission training plan actions on contact tasks, as well as ASE, actions on contact, and evasive maneuver crew task standards. Commanders will determine the annual collective trainer scenario requirements for RCMs, if any, and the requirements will be documented on the DA Form 7120-1-R. Commanders without a collective simulator at their installation should develop collective scenarios for use when a collective trainer becomes available or when other collective training opportunities present themselves.

Note. AMS training is mandatory for MTOE units.

COMBAT IDENTIFICATION TRAINING

4-73. Commanders will establish a CID training program in the ATP portion of the unit SOP using TC 3-17 as a reference. The CID process has the following four key purposes:

- Identify and classify objects in the operational environment as friend, enemy, or neutral entities.
- Achieve fires effects on enemy targets in a timely manner.
- Increase combat effectiveness by focusing combat power on threat elements.
- Minimize/eliminate fratricide and collateral damage.

4-74. The CID program will include training on the CID process and its primary components—accurate situational awareness, positive target identification, and properly applying the rules of engagement. Combat identification is an essential part of all rotary wing actions on the battlefield. Joint combat identification is the process of attaining an accurate characterization of detected objects in the joint battle-space to the extent that high confidence, timely application of military options and weapons resources can occur. This encompasses the entire spectrum of operations on the battlefield from attack/reconnaissance to lift/cargo missions, force protection, and fratricide prevention. Because airborne platforms are a major contributor to situational awareness on the battlefield, aircrews must be capable of making an accurate combat identification of friendly, threat, and relevant civilian vehicles.

4-75. All TOE rotary wing units will use the ROCV software (available through https://rocv.army.mil to train combat vehicle identification. Commanders will establish the following in the ATP CID section of the unit SOP:

- ROCV as the minimum training standard for visual and thermal imagery.
- Any additional threat, friendly, and civilian vehicles relevant to the current theater.
- The minimum standard for evaluation.
- Annual training requirements as a minimum. Consideration should be given to additional training for attack/reconnaissance platforms.

4-76. ROCV annual requirements will be annotated on the DA Form 7120-3-R. Additional SOP requirements designated by the commander as part of the ATP will be annotated on the DA Form 7120-R series (CTL) appropriately.

Note. CID training is mandatory for TOE units. It is optional, but encouraged for TDA units.

PERSONNEL RECOVERY TRAINING

4-77. Personnel recovery (PR) is a key accountability task under the protection warfighting function. PR is not a separate or distinct operation; it must be embedded into all operations, including the ATP. Commanders must outline all facets of PR training in the unit's SOP. PR education and training efforts should focus on three force elements—commanders and staffs, all units as potential recovery forces, and individuals at risk of isolation. Education and exercises for commanders and staffs should stress commanders' and staffs' responsibilities to account for personnel, report missing personnel, and take steps
to recover them. Recovery force training is a Service and component responsibility. The Army does not
have any dedicated or designated forces to conduct the recovery of missing, isolated, detained or captured
personnel. It is the Army's policy that ALL units shall be prepared to conduct missions to return isolated
personnel to friendly control. Isolated personnel training consists of various types and degrees of survival,
evasion, resistance, and escape training. FM 3-50.1 gives more specific guidance in regard to PR.

ATTACK/RECONNAISSANCE HELICOPTER GUNNERY

4-78. The helicopter gunnery program begins with individual qualification and progresses through crew
qualification to unit collective training. Commanders will use FM 3-04.140 and DA PAM 350-38 to
develop a progressive and continuous helicopter gunnery program. The following guidelines do not imply
that the commander should conduct live-fire gunnery training only once a year. Live-fire gunnery training
should be conducted as often as aircraft, ammunition, and range resources will allow. Helicopter gunnery
applies to all units that operate aircraft with weapons systems.

Commander’s Evaluation Tables

4-79. Tables III and IV are designed to evaluate the RCM’s individual gunnery skills. If a records review
reveals that an assigned aviator has not met the annual table VIII requirements, the commander may
require the aviator to fire table III/IV based on the individual aviator’s level of experience and time passed
since last qualification.

Gunnery Continuation Training

Flight Activity Category 1

4-80. All FAC 1 RL 1 crews must successfully complete annual gunnery requirements according to FM
3-04.140 and DA PAM 350-38.

Flight Activity Category 2

4-81. FAC 2 RL 1 RCMs must successfully complete live-fire gunnery according to FM 3-04.140 and DA
PAM 350-38. If resources will not allow all FAC 2 RL 1 RCMs to complete live fire gunnery tables, those
FAC 2 RL 1 aviators designated as SP/IP/MP who are combat crewed must be prioritized to fire. If the
RCMs cannot meet this requirement because of insufficient resources (as determined by the unit
commander), they must satisfactorily complete gunnery exercises similar to table VII and table VIII in a
compatible simulator. OH-58D/OH-58D(R) RCMs are currently exempt from this requirement (except
table V) pending fielding of a compatible simulator. Aviators that only receive simulator-based training
and that do not conduct live-fire according to FM 03-04.140 cannot be counted as gunnery qualified for
T-1 reporting purposes prescribed in paragraph 4-68.

Flight Activity Category 3

4-82. Table V for attack/reconnaissance aircrews with compatible flight simulators.

Gunnery Qualification

4-83. Helicopter gunnery training is an integral part of a unit’s training program. FM 3-04.140 provides
commanders with training strategy information and guidance to develop and incorporate gunnery training
to their ATP. FM 3-04.140 defines gunnery standards, required tables, and scoring criteria for virtual and
live-fire gunnery events. It provides the commander with the standard for measuring the individual, crew,
and collective gunnery skills of his unit. It is up to the commander to use this assessment to tailor his ATP
accordingly.

4-84. The commander sustains his unit’s gunnery skills by incorporating the TTP defined in FM 3-04.140
into every scheduled training event. As a result of applying the principles of FM 3-04.140, effective
gunnery training is conducted every time a mission is planned and executed, an aircraft is run-up, and an
AAR is conducted. For attack/reconnaissance aircraft, every mission is a gunnery-training event and
Training Requirements

should include complete weapons initialization and bore sighting. Assault, utility, and cargo helicopter pre-mission planning and crew briefs should always include door gunnery TTP as outlined in FM 3-04.140. As is the case with ground combat units, aviation units must also incorporate proficiency with individual and crew-served weapons into their overall training program. To fully benefit from live gunnery tables, commanders must include simulator scenarios as part of their aerial gunnery skills qualification prior to live fire.

4-85. The Army standard for individual aviation gunnery training is 85 percent of a company’s assigned aircrews must be qualified on table VIII within the preceding 12 months. The Army standard for aviation unit gunnery training is for 85 percent of the battalion’s/squadron’s assigned aircrew to have completed table X or XII within the preceding 12 months. The training program outlined in FM 3-04.140 will assist in attaining this standard. This training program matches the ammunition requirements in DA PAM 350-38. Commanders must ensure deviations from the program as described in FM 3-04.140 are reported on the USR.

4-86. Table VIII represents an individual qualification requirement, not a currency requirement. After qualification, an individual and crew are considered gunnery qualified for 12 months (until the end of the following training year for RC). To retain gunnery qualification, the individual must satisfactorily complete gunnery crew qualification annually.

DOOR GUNNERY

4-87. Door gunnery is an essential element of force protection. Self-protection for the crew and passengers of assault, utility, and cargo helicopters requires the crew to acquire and engage a variety of targets from varied flight profiles. The UH-60 and CH-47 aircraft are configured with sideward/rearward facing weapons that require a high level of crew coordination and crew integration to effectively employ. An effective door gunnery training program trains the entire UH/CH crew. Door gunnery table VIII is a crew qualification. In addition to door gunners, FAC 1 and FAC 2 pilots should complete this table annually in their assigned crew station. Helicopter door gunnery will be accomplished according to FM 3-04.140 and DA PAM 350-38. DA PAM 350-38 mandates that 90 percent (85 percent for NGB or U. S. Army Reserve Command [USARC]) of the designated M60D/M240H door gunners must have completed qualification according to FM 3-04.140 within the past 12 months. An effective door gunnery program is progressive and culminates in multiship live fire training. Training deficiencies such as an inability to complete multiship door gunnery annually will be reported on the USR.

ANNUAL CHEMICAL, BIOLOGICAL, RADIOLOGICAL, AND NUCLEAR TRAINING

4-88. Commanders will establish a CBRN training program in the ATP portion of the unit SOP according to the appropriate ATM and FM 3-05.132. CBRN training is required for all units unless waived by the appropriate authority. For units without the appropriate equipment and/or units commanders that determine they do not have a CBRN training requirement, they may request a unit ATP waiver IAW AR 95-1.

MISSION-ORIENTED PROTECTIVE POSTURE

4-89. Conducting aviation operations while in mission-oriented protective posture (MOPP) 4 presents special problems. The protective over-garment and gloves restrict movement, and the protective mask restricts vision. The Army is continuously upgrading MOPP gear for aircrews to alleviate these problems. Crewmembers can overcome these restrictions by training as often as possible while wearing MOPP 4 gear. The level of proficiency training will be based on the commander’s assessment of the unit’s METL.
4-90. In units with TOE allocation of equipment, the first 0-6 in the chain of command will evaluate the unit’s mission and determine if CBRN is training is required. If CBRN training is required, all FAC 1 positions and those FAC 2 positions designated by the commander will conduct CBRN training as established in the appropriate ATM. CBRN iteration requirements will be annotated on the DA Form 7120-1-R according to appendix A.

4-91. This training increases crewmembers’ confidence in their ability to successfully accomplish their mission. It also enables commanders to see how CBRN operations affect their unit's ability to accomplish specific missions and how these operations impact on time and personnel requirements.

4-92. While conducting CBRN training wearing MOPP (non-Air Warrior ensembles), the commander will ensure—

- Aircrews use extra care when performing flight duties when the wet bulb globe temperature is above 75 degrees Fahrenheit. Ideally, this training should be conducted during the cooler months of the year.
- Emergency procedure training may be conducted if the IP is not wearing a protective mask according to the appropriate ATM. Emergency procedure training should be performed in the flight simulator or a static aircraft.
- The CBRN flight training outlined below may be conducted by a qualified crew, unless stated otherwise, meeting the minimum crew requirements according to the operator’s manual.
 - Task Requirements. The appropriate ATM outlines tasks that the commander must select for training. The commander also may select tasks associated with the unit's mission.
 - Training Proficiency. The CBRN annual requirements listed in the ATM will provide aircrews with an individual familiarity of flight operations under a simulated CBRN environment. This training can be expanded beyond the minimums outlined in the ATM as commanders desire to bring aircrews from a level of familiarity to a level of crew proficiency. The number of hours and iterations required to train each crewmember depends on the unit's mission and the commander's assessment of the unit's needs for proficiency. The commander must decide how much training is needed (beyond the minimums outlined in the ATM) for proficiency in unit CBRN operations. Once crewmembers are trained, they can maintain proficiency through collective CBRN flight training.
 - Training. Crewmembers will receive CBRN training in the tasks listed in the ATM and any additional CBRN tasks on the CTL.
 - Evaluations. The CBRN tasks outlined in the ATM are the minimum required tasks for annual CBRN evaluations. The evaluation will be conducted according to the ATM. This evaluation will be documented in the crewmember's IATF. The evaluation will be conducted at any time during the ATP year and may be aligned with the APART. Units may conduct CBRN evaluations as part of the commander's no-notice program, in conjunction with the APART, or during a STX. The CBRN flight evaluation will be conducted in the aircraft for NCM and will be conducted in the aircraft or simulator for the RCM as directed by the commander.

AIR MISSION COMMANDER TRAINING

4-93. When two or more aircraft are operating as one flight, the unit commander will designate an AMC. The AMC is a leadership position and is not a crew duty assignment. The AMC serves as the overall mission leader and is delegated the authority by the commander to make all decisions during multi-aircraft operations. AMCs must be prepared to make critical decisions throughout mission planning, GO/NO-GO decision briefings, and mission execution. The AMC must possess a thorough understanding of aircraft capabilities, mission flow, and execution. The AMC must also know the ground tactical plan and possible mission contingencies. Rank and position alone do not qualify a person to serve as an AMC. The AMC is selected to lead an assigned mission based on the appropriate level of aviation proficiency, experience, and
leadership. These qualities are the best indicator to determine which aviators are the most capable of executing the unit’s mission.

4-94. The ATP commander will establish an AMC training and certification program. The training program will select individuals based on experience and who have demonstrated the proficiency and tactical decision-making skills required to fill the AMC role. AMC training/certification will be annotated on the DA Form 7122-R as an event.

AVIATION LIFE SUPPORT EQUIPMENT TRAINING

4-95. Commanders will establish an ALSE training program in the ATP section of the unit SOP. At least once annually, commanders will ensure that all crewmembers receive training in the operation, use, and operator maintenance of aviation life support systems (ALSSs) according to AR 95-1. Proper ALSE assets are critical factors in the crewmember's ability to maintain battlefield mobility and survivability.

AEROMEDICAL TRAINING

4-96. The commander, assisted by the flight surgeon, develops an aeromedical sustainment training program that meets the unit’s specific needs. Considerations will be given to the unit’s mission, area of operations, and environments that the unit may operate. Because of the medical and technical nature of the aeromedical training program, commanders should involve their supporting flight surgeon in developing the program. Commanders can obtain further assistance in developing a unit aeromedical sustainment training program from the Dean, United State Army School of Aviation Medicine (USASAM), ATTN: HSHA-AVN, Fort Rucker, AL 36362. The aeromedical sustainment training program will be conducted according to TC 3-04.93. The following Web site contains lesson plans and student handouts for required annual training that are available for downloading at https://www.us.army.mil/suite/folder/7284062.

HYPOBARIC REFRESHER TRAINING

4-97. Hypobaric refresher training will be according to TC 3-04.93, appendix A.

DECK LANDING OPERATIONS TRAINING

4-98. Flight crewmembers must complete deck landing qualification before they can conduct naval deck landing missions. They also must be current according to the most recent Army/Navy deck landing operations memorandum of understanding.

4-99. The following references are used with deck landing operations:

- Current Army/Navy MOU.
- FM 1-564.
- NAVAIR 00-80T-122.
- NAEC-ENG-7576.
- Joint Publication (JP) 3-04.
This page intentionally left blank.
Chapter 5
Evaluations and Tests

EVALUATIONS

GENERAL
5-1. An evaluation is a tool used to ensure crewmembers develop and maintain base, mission, and additional task proficiency to established standards. An individual’s lack of proficiency may indicate a need for increased task iterations and/or frequency for that particular crewmember. While evaluations are primarily a method to assess individual proficiency, an adjustment in the ATP may be required if a sufficient number of crewmembers of a unit fail to demonstrate proficiency in a specific task or tasks.

GRADING EVALUATIONS
5-2. Grading evaluations will be according to the appropriate aircraft ATM. Evaluators will adhere to published standards. However, if other than ideal conditions exist; the evaluator must make allowances for those conditions during the grading of each maneuver (for example, gusty winds near the limit of aircraft operational limitations).

CONDUCTING EVALUATIONS
5-3. Prior to conducting flight evaluations, evaluators will brief tasks the crewmember being evaluated must perform.
5-4. While conducting flight evaluations, evaluators will—
 • Perform the crew duties normally assigned to other crewmembers performing the tasks and missions being evaluated.
 • Perform aircrew coordination actions prescribed in the appropriate ATM.
5-5. SPs are authorized to train and evaluate all RCMs and NCMs as directed by the ATP commander. IPs are authorized to train all RCMs and NCMs except for other IPs and SPs. IPs are authorized to evaluate other IPs and SPs only when reestablishing NVG and/or aircraft currency.
5-6. IEs are authorized to conduct instrument training and evaluation on all RCMs. An ME conducts the MP/FCP/ME training and evaluation. A maintenance designated ME/IP/SP will conduct training and evaluation for fixed-wing maintenance pilots.
5-7. SIs are authorized to train and evaluate all NCMs as directed by the commander. FIs are authorized to train and evaluate all NCMs except other FIs and SIs. To reestablish aircraft or NVD currency, an FI may evaluate an FI or SI.
5-8. When a crewmember is being evaluated as an instructor/evaluator, the instructor/evaluator must include role reversal as a part of the evaluation. Role reversal is a planned situation when the instructor/evaluator assumes the role of the crewmember being evaluated, and the evaluated crewmember assumes the role of the evaluator.

Note: Role reversal may be accomplished during the oral and/or flight portion of the evaluation.
5-9. The evaluator must clearly announce when role reversal is initiated and when it is concluded to prevent confusion and crew coordination errors in the aircraft. The PC or mission commander designation does not change. This situation allows the evaluated crewmembers to demonstrate their proficiency in training and evaluating crewmembers.

Note. Evaluators will brief the use of role reversal during the crew brief to alert all crewmembers of the intent.

HANDS-ON PERFORMANCE EVALUATIONS

STANDARDIZATION FLIGHT EVALUATION

5-10. This is an evaluation consisting of flight tasks and/or procedures conducted in each aircraft mission, type, design, and series group in which a crewmember is required to perform duties. Standardization flight evaluations determine the crewmember’s ability to perform assigned flight duties. The evaluation will—

- Be performed IAW AR 95-1.
- Consist of the flight evaluation described in the appropriate ATM.
- Be conducted by a designated SP, IP, FI, or SI.
- Follow the CTL or be as briefed by the commander.

INSTRUMENT FLIGHT EVALUATION

5-11. This evaluation consists of flight tasks and/or procedures conducted in actual or simulated instrument meteorological conditions in each aircraft category in which a RCM is required to perform duties.

5-12. The evaluation will be performed according to AR 95-1 and will—

- Consist of the flight evaluation described in the appropriate ATM.
- Be conducted by a designated IE.
- Be conducted at least once each year during the RCM’s APART.

5-13. The commander may authorize the instrument flight evaluation to be conducted in a compatible flight simulator.

5-14. Two RCMs may be evaluated at the same time. Both crewmembers must have access to the flight controls and perform all required instrument tasks as designated on the CTL.

ANNUAL NIGHT VISION GOGGLE FLIGHT EVALUATION

5-15. NVG annual evaluation will be conducted according to AR 95-1 and the appropriate ATM.

MAINTENANCE PILOT/FUNCTIONAL CHECK PILOT/MAINTENANCE EVALUATOR FLIGHT EVALUATION

5-16. This is an evaluation of visual flight maneuvers/procedures conducted in each aircraft in which MP/FCP duties are performed according to the appropriate ATM. RCMs designated as an MP or ME must complete this evaluation—

- According to AR 95-1.
- As described in the appropriate ATM.
- Must be evaluated by a designated ME/SP/IP as applicable.
- Once each year during a RCM’s APART period in each aircraft for which they are designated MP/ME.
- According to the CTL or as briefed by the commander.
PROFICIENCY FLIGHT EVALUATION TO REESTABLISH CURRENCY

5-17. These evaluations will be conducted according to AR 95-1, the appropriate ATM, and the unit SOP. NVD currency evaluation tasks will be according to the appropriate ATM. To reestablish aircraft or NVD currency, an IP may evaluate an IP or SP, and an FI may evaluate an FI or SI.

POSTACCIDENT FLIGHT EVALUATION

5-18. This evaluation is conducted for RCMs and NCMs involved in a Class A or B accident or Class C accident at the discretion of the commander according to AR 95-1. Crewmembers will be suspended from flight duties until the completion of the flight evaluation. The type and nature of the evaluation depend on the crew duties the aviator was performing at the time of the accident. The accident circumstances should be used to inform training management decisions including task frequency, training method, and environment (live or virtual). The type and nature of the evaluation will depend on the crew duties the RCM or NCM was performing at the time of the accident. Special emphasis will be placed on evaluating the task being performed at the time of the accident under similar conditions, if possible. After the evaluation, the SP/IP/SI/FI, as appropriate, will debrief the examinee and make the appropriate entries on DA Form 7122-R.

MEDICAL FLIGHT EVALUATION

5-19. This evaluation is conducted according to AR 95-1. The SP/IP/SI/FI, as appropriate, on the recommendation of the FS and the commander’s direction, will require the examinee to perform a series of tasks most affected by the examinee's disability. The evaluation should measure the examinee's potential to perform ATM tasks despite the disability. It should not be based on current proficiency.

5-20. After the examinee has completed the medical flight evaluation, the evaluator will document the evaluation on DA Form 7122-R and provide the results to the commander and flight surgeon for appropriate disposition.

5-21. The FS will document the recommendation to the commander on DA Forms 4186 and 7122-R.

5-22. The unit commander will make appropriate decisions concerning the examinee's flight duties and document them on DA Form 4186.

NO-NOTICE EVALUATIONS

5-23. A comprehensive no-notice evaluation program is a valuable tool that allows commanders to monitor training effectiveness at all levels. Each commander must establish a no-notice proficiency evaluation program in the unit SOP. No-notice evaluations may be written, oral, hands-on flight evaluation in aircraft/compatible simulator, or a combination thereof. This program measures the effectiveness of individual, crew, and collective training. Commanders use the results of no-notice evaluations to ensure unit standardization and readiness and to tailor the unit’s individual, crew, and collective training programs.

ANNUAL PROFICIENCY AND READINESS TEST REQUIREMENTS

5-24. The APART is a mandatory process that measures a crewmember’s individual and crew proficiency and readiness. It consists of a written examination and hands-on performance tests that must be passed annually according to AR-95-1 and the appropriate ATM. RL 1 crewmembers must pass each component of the test during their APART period. The APART period is the 3-month period ending on the last day of the crewmember’s birth month. During operational deployments, the APART period may be extended (by the first O-6 in the chain of command) up to 3 additional months beginning on the last day of the crewmember’s birth month, for deployed aviators to accomplish all components of the APART. DACs and ARNG technicians must comply with the appropriate ATM for the initial aircraft qualification and the annual standardization flight evaluation.
5-25. A crewmember designated RL 1 during the 3-month APART period must complete all APART requirements. RC rotary wing crewmembers designated RL 1 or RL 2 during their 3-month APART period must complete all APART/NVG requirements appropriate to their RL designation. Crewmembers receive credit for the aircraft operator's manual written examination and hands-on performance tasks performed during RL progression training if they demonstrate proficiency and are evaluated satisfactorily on the tasks within the 3-month APART period. Those crewmembers participating in RL 3 or RL 2 training programs are not subject to the APART evaluations unless they were removed from RL 1 because of a training deficiency.

5-26. The aircraft operator's manual written examination is an open book examination prepared at the local level and consists of 50 objective questions on the information indicated below. The minimum passing score is 90 percent.

- Rated crewmembers. For RCMs, the examination covers the entire operator's manual. RCMs must complete this examination for primary, additional, and alternate aircraft they are required to operate as specified by the commander.
- Nonrated crewmembers. For NCMs, the examination focuses on information the crewmember needs to know to perform crew duties. It covers aircraft systems and the operation and servicing of the aircraft and mission equipment contained in the operator's manual.

5-27. The hands-on performance evaluation consists of oral and flight evaluations as outlined in the appropriate ATM. The hands-on performance tests require evaluation of proficiency in several areas and may be separated into different flight periods. However, crewmembers must successfully complete all requirements during their APART period.

5-28. The standardization flight evaluation is conducted according to AR 95-1. An SP/IP/SI/FI conducts this evaluation in each primary, additional, and alternate aircraft a crewmember is assigned to operate.

5-29. The instrument flight evaluation is conducted according to AR 95-1. An IE conducts this evaluation in the RCM's primary and alternate aircraft or in a compatible flight simulator.

5-30. The maintenance flight evaluation/functional check flight evaluation is conducted IAW AR 95-1. An ME will conduct this evaluation in the primary, additional, and alternate aircraft a crewmember is assigned to operate.

RCMs who complete a graduate POI at a USAACE-approved training site (Instructor Pilot Course, Instrument Examiner Course, Maintenance Test Pilot Course, or Functional Check Pilot Course) during their APART period may credit those tasks that were evaluated during the end-of-stage, end-of-phase, or end-of-course evaluation toward the completion of the APART evaluation requirement.

5-31. Commanders will process crewmembers who fail to meet ATP requirements according to AR 95-1. Commanders should formally counsel individuals who fail to meet ATP requirements and document on DA Form 4856 (Developmental Counseling Form).
Chapter 6

Composite Risk Management

GENERAL

6-1. Tough, realistic training, conducted to standard, is the cornerstone of Army warfighting skills. The battle-focused training environment places stress on both Soldiers and their equipment, creating a high potential for loss. As training realism increases, so does the potential for loss. If risk is not reduced, personnel and equipment losses, caused by training mishaps, pose a serious drain on warfighting assets. Accidental losses in training are no different from combat losses; the assets are gone. Commanders must find ways to protect individuals and equipment from accidents during realistic training to prepare for war. Guidance on risk management is contained in FM 5-0, FM 5-19, and AR 385-10.

6-2. An effective risk management program is vital at all levels of aviation operations and requires the personal attention and participation of unit commanders and leaders up and down the chain. The protection of aviation Soldiers and their weapon systems is a way of life in the aviation business. An effective ATP, well thought out and planned in conjunction with appropriate regulations and guidance, is arguably the most important factor in any unit’s safety program once embraced by every Soldier in the unit. Flying “by the book” does not hinder but actually enhances a unit’s battle focus. The crawl, walk, run approach to training is imperative to risk reduction, as is the active participation of commanders at all levels of the training process.

COMPOSITE RISK MANAGEMENT CONCEPT

6-3. CRM is the decision making process for identifying hazards and mitigating risks across the entire spectrum of Army missions, functions, operations, and activities. It is a holistic assessment blending tactical and threat-based risk management with accidental, hazards-based risk management. CRM is not a stand-alone process, a paper work drill, or an add-on feature to planning. Rather, it is used as a fully integrated element of planning and decision making. It may also be executed intuitively in situations that require hasty planning or immediate action. CRM should be viewed as part of the military art interwoven throughout the Army’s military decision making and training management cycles. CRM follows a process which personnel of all ranks must continually use. The CRM steps are shown in figure 6-1, page 6-2.

6-4. Using the CRM process, leaders identify the hazards that may cause mission degradation and loss of unit combat readiness and effectiveness. These include those hazards that may cause injury and/or death to personnel or damage and/or destruction of equipment. A commander should then determine the possible impact of each hazard on the mission, take action to minimize or eliminate the hazards, then execute the mission or modify the mission to reduce risk further.

6-5. CRM is not a restrictive measure. It is a conscious analysis of the mission itself, possible courses of action, and the implementation of appropriate controls to ensure any risk is reduced or eliminated.
The CRM process includes several terms all leaders should know. These terms are—

- **CRM process.** The process of identifying and controlling hazards to protect the force.
- **Control.** Any action taken to eliminate hazards or reduce their risk.
- **Hazard.** Any real or potential condition that can cause the loss of an asset. These losses include—
 - Injury, illness, and death of personnel.
 - Damage to or loss of equipment or property.
 - Mission degradation.
- **Risk.** The chance of hazard or bad consequences. Exposure to a chance of injury or loss. Risk level is expressed in terms of hazard probability and severity.
- **Exposure.** The frequency and length of time subjected to a hazard.
- **Probability.** The likelihood that an event will occur.
- **Severity.** The expected consequence of an event in terms of the degree of injury, property damage, or other mission impairing factors that could occur.
- **Risk Assessment.** The identification and assessment of hazards.
- **Residual Risk.** Any anticipated level of risk remaining after controls have been identified and selected for hazards that may result in loss of combat power.
- **Risk Decision.** Accept or not accept the risk(s) associated with an action; made by the commander, leader, manager, or individual responsible for performing that action.

The standard for CRM is leadership at the appropriate level of authority making informed decisions to control hazards or accept risks. Leaders are responsible and accountable for assessing their operation as a total system.

The degree of risk determines the level of decision authority. When resources to reduce risk to an acceptable level are not available, the risk issue must be elevated to the next higher command. This process continues until the information is presented to the level of command that has the resources and authority to
eliminate the hazard or control the risk to an acceptable level. In this manner, a conscious and informed decision is made to either commit the resources to control the hazards or to accept the risk.

RESPONSIBILITIES

6-9. CRM is not complex, technical, or difficult and is not limited to the brigade and battalion commanders. It is a simple decision making process and a way of “thinking through a mission” to balance mission demands against known risks. Trainers/evaluators can maintain realism in training accomplishment thorough CRM. In peacetime, the process must be deliberate, continuous, and must become second nature to those responsible for planning, approving, or leading activities. In combat, the process is no less deliberate, though risks may be accepted as dictated by the mission priority.

LEADERS

6-10. What is the commanders responsibility, at all levels? Who establishes what risk, extremely high (E), high (H), medium (M), or low (L)?

6-11. Managing risks are a leadership responsibility. At the crewmember level, PCs and instructors/evaluators are the principal risk managers. Planning must incorporate consideration for known hazards and must address appropriate control measures to minimize exposure to these hazards. While CRM is introduced in the planning phase of a mission, for PCs, CRM responsibilities are not complete until the mission debriefing is complete. To meet these responsibilities, leaders—

- Do not accept unnecessary risk. If the risk can be eliminated or reduced and the mission can still be accomplished, the risk is mitigated and acceptable. Find ways to mitigate the risk (that is, change the crew mix, change the mission execution time, provide additional preparation and training, add additional supervision, and so forth) that will still allow completion of the mission. Once hazards are identified and controls recommended, compare and balance the residual risk against the mission expectation.
 - Premission. The commander, or other designated risk approval authority, decides if the controls are sufficient to accept the risk. If the risk is excessive, the commander can direct additional control measures, modify controls, request the next higher commander’s involvement, or reject the mission.
 - During mission execution. The commander cannot always be available to make every risk decision. In the aircraft when the situation, time, or other factors do not allow for the commander’s decision, the AMC, PC, instructors/evaluators, or other unit leaders become the primary risk managers. In such cases, they should use the commander’s guidance, their professional experience, unit SOP, ATM, regulations, current situation, developing conditions, and so forth as the basis on which they formulate control measures.
 - They should evaluate unexpected hazards that are encountered during the course of the mission and apply the appropriate control measures.
- Make risk decisions at the proper level. Decisions made at the proper level eliminate the involvement of commanders not normally involved in the mission or commanders not authorized to accept the level of risk. PCs must know the appropriate level of approval authority based on the level of risk. The risk approval authority will vary between units and risk approval authority must at all levels be capable of mitigating risk or accepting that level of risk.
- Weigh the risks versus the benefits. The benefits gained by accepting a residual risk must clearly outweigh the potential cost in terms of life, limb, or equipment loss should an incident occur.
- Identify controls. The commander will issue guidance regarding the appropriate control measures. Once the controls are identified, PCs must ensure these controls are understood and implemented during the mission.
 - The crew mission briefing is where the PC presents these controls to the crew. The delineation of duties, such as airspace surveillance responsibilities, is an example of a hazard control established before flight.
The unit SOP is a formal document of CRM controls. These controls are only effective when followed. “Per the SOP” is a valid control measure only when all crewmembers are knowledgeable of the unit SOPs contents. Flight weather minimums are a good example. If the SOP requires 500-2 for a night training flight, the commander must reinforce and support the PCs decision to abort a mission, divert, or land the aircraft when conditions fall below these standards. Pre-mission planning should include options/controls for this example.

Crew coordination is a method of “on-the-fly” CRM by identifying unexpected hazards, establishing control measures, and evaluating these hazard controls continuously during the conduct of a mission.

Integrate CRM into all stages of all operations. Integration begins with the pre-mission planning and continues through the completion of the mission debriefing. Consider CRM as contingency planning. The commander and staff should look at factors that could cause the mission to fail (cause loss of life, limb, or equipment) and implement controls to minimize that probability. During the debriefing, unexpected hazards for a completed mission then become expected hazards for follow-on missions.

STAFF

6-12. While crewmembers are not specifically members of the unit staff, they normally provide input to the battalion staff through their company commander. During operations, the staff normally does not occupy a crew station, but through their work, a significant portion of CRM does occur before any start switch is pressed. Some functions that the staff performs, relative to CRM, are as follows:

- Assist in the planning and identification of hazards for operations.
- Integrate CRM into operations plans and orders. In developing plans, the staff evaluates the risks, recommends controls to minimize the risks, and provides the commander with an assessment of the effectiveness of the imposed controls. In training situations, the staff—
 - Advises the commander of the controls that impact on training realism so the commander can make the risk acceptance decision.
 - Evaluates imposed safety restrictions to ensure optimal training benefit is achieved without unnecessary restrictive measures applied.
- Assess the operational risk. Using mission, enemy, terrain and weather, troops and support available, time available, and civil considerations factors to identify the risk to mission accomplishment, the staff begins to assess operational risks. The most important consideration is the outcome of the operation for the unit, higher headquarters, and adjacent units. Risk analysis is formulated using a course of action that is developed along the spectrum of frequent to seldom event occurrence. The staff reviews and expands or refines the list throughout the planning and execution of the exercise. The staff then evaluates the possible consequences of those risks from catastrophic to marginal. For example, the staff plans a multi-aircraft mission to airlift personnel or supplies. If the weather forecast is for marginal conditions, part of the planning should include the possibility of weather conditions degrading during the mission. Controls the staff might propose are—
 - Reinforcing those sections of the SOP pertaining to adverse weather.
 - Briefing crews regarding the current and forecast adverse weather and the possible courses of action selected by the commander.
 - Planning alternate transportation.
 - Designating recovery airfields.
 - Practicing inadvertent instrument meteorological condition (IIMC) recovery.
6-13. The staff should also consider the possibility of additional personnel or equipment showing up for transport than were expected. How will the crews accommodate this change? What impact will the additional payload have on the aircraft performance? Controls could include maximums on payload, additional sorties, backup aircraft, or other controls that would ensure mission accomplishment with minimum risks. There are additional hazards that could be identified in this example.

SAFETY OFFICER

6-14. The Safety Officer—
- Is an integral part of the CRM, planning process.
- Is a special staff officer who advises the commander and staff on safety requirements and recommends controls to minimize risks.
- Participates in all phases of the military decision-making process to ensure CRM follows the commander's intent.
- Assists all staffs in integrating the CRM process into other staff functions.
- Assists the command in supervising operations to ensure application and adherence to imposed controls and provides feedback on the effectiveness of the program.

CREWS

6-15. Crewmembers are a critical part of the CRM process. They perform the mission, and their involvement in the planning phase is crucial to identification of hazards and controls. Crewmembers must clearly understand the controls implemented to mitigate risks. During mission execution, crewmembers must perform tasks and implement control measures to standard. The employment of good crew coordination is paramount to identifying unexpected hazards (enemy situation, wires, weather, and so forth) and to continuously refine controls during the mission.

INDIVIDUALS

6-16. Self-discipline is critical to mission accomplishment and to an effective CRM program. The best CRM plan is worthless if the individuals performing the mission do not adhere to established controls or do not perform the tasks to standard. Individuals performing a mission are also responsible for performing CRM. While performing the mission, conditions change, hazards change, risks change, and, by necessity, CRM controls may change. The individual must constantly assess the conditions and continuously apply the principles of CRM to ensure minimum risk to themselves, fellow Soldiers, the aircraft, and the mission.

COMPOSITE RISK MANAGEMENT TRAINING

6-17. Commanders must conduct CRM training for their unit. Training should emphasize the process and must reinforce the philosophy that Soldiers—crewmembers and ground personnel—are responsible for performing CRM; without a full range of participation, commanders may not make an informed decision.

COMPOSITE RISK MANAGEMENT PROCESS

Step 1. Identify Hazards

6-18. Identify the major events in the mission and list chronologically. This will help identify all hazards associated with the specified as well as implied tasks.

6-19. Complete a preliminary hazard analysis of operational events. This identifies, as early as possible, the obvious hazards expected during the mission. Early identification provides more flexibility in addressing the hazards and allows more options for controls, which maximizes a leader’s ability to complete the mission.
STEP 2. ASSESS RISKS

6-20. Determine the level of risk associated with each hazard. Commanders should ask, “Can the hazard result in a fatality, damage to equipment, or mission failure?” The degree of risk associated with each particular hazard will help define the level of controls necessary. For example, risks associated with a single ship, NVD, tactical flight might include wire strikes, inadvertent weather, tree strikes, and spatial disorientation while risks associated with a multi-ship mission in the same environment would include mid air collision as well. (These are usually contained in the unit SOP or designated by the command.) An example of some controls for the previous example may include a day route reconnaissance to establish minimum weather requirements, change the crew mix, adjust the mission execution time, conduct crew awareness briefings on recovery procedures, and conduct spatial disorientation (recognizing and countering) training. For multi-ship operations, controls might also include a rehearsal to practice formation breakup procedures and to specify separation distances and altitudes.

STEP 3. DEVELOP CONTROLS AND MAKE RISK DECISION

6-21. All hazards cannot be eliminated. There is a point at which the command must accept the risks and direct the mission to continue, modify the mission, or abort the mission. This is not to say that the CRM process stops. The CRM process is a continual process. There may come a time during a mission, when an opportunity exists to eliminate a particular risk. That opportunity might not be apparent if the CRM process is not continual. The intent is to mitigate the probability of an accident or the severity of the consequences with prudent controls whenever the risk is evident. For example, an experienced crew on a NVD mission with the routes reconnoitered and good illumination still has the possibility of a maintenance malfunction, a human error occurring, or an obstacle strike. The command has identified the controls but cannot eliminate all the risks; it accepts the residual risks, in this case, as necessary and unavoidable.

6-22. In identifying and implementing controls, commanders should—

- Eliminate the hazard. This may include changing the crew, mission time (day versus NVD), route, or aircraft type.
- Guard or control the hazard. For flight operations, this might include routine radio calls to operations, crew mix, safety aircraft, emergency locator transmitter (ELTs), and minimum flight altitudes.
- Change operational procedures to limit exposure to hazards. For example, minimize the number of systems or personnel or limit exposure to a particular hazard.
- Train and educate personnel in hazard recognition and avoidance. Some good examples include the limitations of the NVDs and the known performance and operational limits of the aircraft.
- Enforce the use of protective clothing or equipment that will minimize injury and damage potential. Examples include the flight helmet (crash protection and hearing conservation), flight suit (fire protection), and aircrew integrated recovery survival armor vest and equipment/survival armor recovery vest insert and packets (SARVIP)/AW (ballistic protection).
- Use color coding and signs to alert personnel of hazards—safety lanes in hangars, stairs, curbs, marking on aircraft for tail rotors, forward arming and refueling point (FARP) markings, and so forth are included here.

STEP 4. IMPLEMENT CONTROLS

6-23. Integrate controls into the planning. Ensure awareness of the hazards and controls, from the commander through the individual(s) performing the task, is essential to success.
STEP 5. SUPERVISE AND EVALUATE

6-24. Leaders must enforce the controls and standards. The best CRM program is ineffective if the command does not enforce the controls. PCs are leaders on every aircraft on a mission and upholding standards must be a high priority. The most common cause of accidents is the failure of an individual to adhere to standards or a failure of the command to enforce a known standard.

6-25. Leaders must supervise activities of subordinate units. Battalion will supervise company operations; the company will supervise platoon operations, and so forth. Supervising a subordinate unit does not imply interference. Only by seeing the character of operations will leaders fully appreciate risk implications or the effectiveness of the CRM program.

6-26. Leaders at all levels are responsible for supervising operations. From private to general, all Soldiers can, and must, share in the responsibility for supervising. The purpose of this supervision is to ensure that the identification of hazards and that the controls are followed. Additionally, as conditions change, the supervisor continually evaluates the effectiveness of established controls to ensure successful completion of the mission.

RISK ASSESSMENT TOOLS

6-27. Using risk assessment tools—such as matrixes and diagrams—are valuable during the planning stage of a mission. These tools do not internalize the entire CRM process, but they do provide a systematic approach to identifying and reducing risk. However, do not allow the risk assessment tools to become the overriding concern of the CRM process. Tools merely provide a measurement for leaders to gauge risk and control effectiveness.

Note. Risk assessment tools do not make decisions. Leaders make decisions.

6-28. Probability is the likelihood of an event. This is your estimate, given what information you know and what others have experienced. The probability levels estimated for each hazard are based on the mission, course of action, or frequency of a similar event. For the purpose of CRM, there are four levels of probability—frequent, likely, occasional, and seldom. See figure 6-2 and figure 6-3, page 6-8.

<table>
<thead>
<tr>
<th>PROBABILITY — FREQUENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurs very often (known to happen regularly). Given 500 or so exposures to the hazard, expect that it will definitely happen to someone. Two examples of frequent occurrences are rollovers and rear ending a vehicle.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROBABILITY — LIKELY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurs several times (a common occurrence). Happens every 1,000 or so exposures. Examples are IEDs, wire strikes for aircraft, controlled flight into terrain, and accidental discharges.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROBABILITY — OCCASIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurs sporadically (but is not uncommon). You may or may not get through your deployment without it happening. Two examples are UXO and fratricide.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROBABILITY — SELDOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remotely possible (could occur at some time). Usually several things must go wrong for it to happen. Two examples are heat-related death or electrocution.</td>
</tr>
</tbody>
</table>

Figure 6-2. Probability chart
6-29. Catastrophic is defined as follows:
- Loss of the ability to accomplish the mission or mission failure.
- Death or permanent total disability (accident risk) of personnel.
- Loss of major or mission-critical system or equipment.
- Major property (facility) damage.
- Severe environmental damage.
- Mission-critical security failure.
- Unacceptable collateral damage.

6-30. Critical is defined as follows:
- Significantly (severely) degraded mission capability or unit readiness.
- Permanent partial disability, temporary total disability exceeding 3 months time (accident risk).
- Extensive (major) damage to equipment or systems.
- Significant damage to property or the environment.
- Security failure.
- Significant collateral damage.

6-31. Marginal is defined as follows:
- Degraded mission capability or unit readiness.
- Minor damage to equipment or systems, property, or the environment.
- Lost day due to injury or illness not exceeding 3 months (accident risk).
- Minor damage to property or the environment.

6-32. One matrix cannot include all of the hazards of every mission nor can one matrix apply to all units. Commanders must determine the usefulness and content of any risk assessment tool. Commanders must consider a number of basic principles when they use these tools.

Note. Additional risk management tools can be found at https://safety.army.mil.

6-33. Commanders must remember—
- Adding the numbers up and finding the right level of command to accept the risk is not CRM.
- The risk assessment matrix is most valuable during mission planning.
- Each element of the matrix represents a specific hazard that, in the risk assessment process, translates into risk.
6-34. Commanders should review the unit METL as they develop their risk assessment matrixes. They should assess each METL task from the highest risk to the lowest risk. Commanders should then select the task(s) or task elements on which they personally want to initiate risk reduction action and approval. Their risk assessment matrixes should clearly show these critical elements.

6-35. Commanders should include additional items when developing the risk assessment matrix, when applicable. An example of a high-risk mission is a tactical nap-of-the-earth mission flown at night using the NVG in combat with no illumination and restricted visibility caused by fog. The factors that play the biggest role in this example could be lack of illumination and the restriction of visibility. Commanders may wish to refer these types of mission elements to the next higher commander for risk reduction or acceptance because the effect of these factors greatly increases mission risk.
This page intentionally left blank.
PART THREE

Collective Training

Chapter 7

Training the Unit

ARMY FORCE GENERATION

7-1. ARFORGEN model was developed to allow units the appropriate time to program training and resources to meet their next deployment cycle. It was also intended to give some predictability to the personnel tempo of Army Soldiers. The Army’s active component model was designed around a 3-year period. It breaks out tasks in the Reset/Train Force Pool, the Ready Force Pool, and the Available Force Pool. Figure 7-1, page 7-2, is an example of a heavy brigade combat team (BCT) model.

7-2. The Aviation model supports the BCT model so that we are able to accomplish the tasks required for the combined arms fight (figure 7-2, page 7-3). Based on the current operational tempo, the model may have to be amended to meet deployment requirements. The models were developed with a steady state environment in mind. It was not designed to meet the requirements of today’s current pace. The success of this model depends on the unit, and more importantly supporting organizations across the Army setting the conditions for success prior to entering the reset/train phase. Considerable planning must be accomplished to ensure the prepositioning of resources and phasing of equipment modifications and new equipment fielding that will affect the unit’s training time and equipment availability. The unit must also plan personnel education requirements and coordinate with the institution for class seats. Considerations include time available, resources required, personnel availability, and supported unit training requirements and opportunities.

7-3. Aviation companies and battalions can achieve training certification goals in conjunction with the synchronization of training with the supported ground unit. This can be done through field training exercises and combat training center rotations. Certification of the CAB requires a venue that drives events from both higher and lower headquarters. The aviation training exercise (ATX) enables the CAB to be tested under the rigor of the myriad of tasks that the unit will have to perform for C2 of the entire CAB and respond to higher authorities. There are times when the ATX is the first event the CAB has all of its subordinate elements together prior to operational deployment. The ATX also allows the CAB to standardize its procedures with its subordinates and achieve its brigade proficiency and certification. The ATX should be accomplished prior to the warfighter exercise, so the CAB can ensure synchronization of aviation for the ground commander’s scheme of maneuver.
Figure 7-1. Example of a heavy brigade combat team model
7-4. The current operational requirements of our Army have not allowed us to enter the steady-state cycle that would permit the ARFORGEN model to plan and synchronize training resources. Figure 7-3, page 7-4, is a sample of the current timeline for 6-month reset and 15-month operational dwell.
SUPPORTED AND SUPPORTING UNIT TRAINING

Leader and unit training must be more joint and must embed the realities of the current strategic and operational environment.

General Peter J. Schoomaker, CSA

7-5. Operating and fighting within a JIIM environment requires training with JIIM forces. Responsibilities overlap and can be confusing, but the ultimate responsibility is with the land component commander. If an aviation battalion is going to train to fight as a part of a division operation, then the division commander and his staff have significant training responsibilities, primarily in the areas of planning and coordination with the many agencies that are required for successful mission accomplishment. Likewise, if a BCT routinely conducts air assaults, then the BCT commander’s METL should include air assault missions. In this case, the supported commander and his staff also have training responsibilities, to include staff planning and coordination for proper employment and the conduct of aviation missions.

7-6. Unit relationships, the training cycle, and the training tasks each unit needs to accomplish all impact collective training. Supported unit training objectives may or may not be consistent with a particular aviation unit’s training requirements. For example, an attack helicopter battalion training with a BCT may conduct air assault security and close combat attack missions in support of their mission. Because of this unit support relationship, few opportunities exist to conduct reconnaissance and interdiction attack missions as part of the division’s overall mission requirements. Using aviation CATS as a prescriptive tool...
allows a commander to make a case for inclusion and completion of all METL tasks, and to identify and arrange for all required training resources, including time, across its diverse mission area.

7-7. An analysis of the CATS for aviation, combined with the CATS for the supported unit, optimizes training for combined arms and JIIM missions. The key is to determine the critical battle tasks that are common to aviation and ground maneuver in support of the higher headquarters METL.

AVIATION MAINTENANCE

7-8. The primary objective of Army aviation maintenance is to provide safe, mission-capable aircraft to satisfy mission requirements. The aviation maintenance system has evolved over years of peacetime and combat operational experience to focus on providing the assets necessary to support operational and training needs without compromising safe maintenance standards.

7-9. Aviation maintenance is a complicated and sophisticated business that requires the constant support and participation of commanders and leaders at every level. Mission readiness, training, safety, and standardization all depend on the ability of the aviation commander to ensure that his unit has a viable and effective maintenance program. Aviation commanders do not face a bigger challenge than ensuring that maintenance is given the visibility and priority commensurate with the time and energy expended by his Soldiers.

MAINTENANCE TRAINING

7-10. Maintenance training is integral to training aviation units and must be incorporated into scheduled training periods. Maintenance management training may be scheduled as a part of leader development training, or individual Soldier maintenance training may be scheduled during sergeant’s time. Similarly, hands-on instruction by maintenance supervisors must be incorporated into scheduled and unscheduled maintenance periods.

7-11. Maintenance training is often best achieved when “learning by doing.” This requires maintenance supervisors to keep good records to ensure that critical tasks are not overlooked in the training plan. Likewise, Soldiers proficient in certain tasks may oversee apprentice Soldiers in execution of maintenance tasks. A time proven model has an aviation mechanic gaining proficiency under the supervision of an experienced phase maintenance team chief, in a more structured environment, prior to becoming a crew chief. Battle-rostering of maintenance teams for not only scheduled but unscheduled tasks as well assists in developing efficient operations.

7-12. Leaders at all levels must understand basic maintenance management principles. Training leaders in maintenance operations is a major element of aviation leader development. This includes how to plan for and manage flow charts, bank time, scheduled and unscheduled maintenance, aircraft performance deficiency write-up procedures, and the Army’s supply system. Training must also include cross training of enlisted maintenance personnel to maximize their benefit to the unit and their own professional development.

MAINTENANCE INITIATIVES

7-13. The CATS cannot be executed without major initiatives to enhance the ability of aviation commanders to perform required scheduled and unscheduled maintenance. Resourcing (trained maintainers, time to perform maintenance, and financial support commensurate with hours to be flown) requires maintenance management at all levels of command.

- Flying hours and flying hour dollars cannot be separated. Commanders need to receive both as a single resourcing package, to be used to support aviation training and maintenance.
- “Maintenance is Training, Training is Maintenance.” An ATKHB equipped with AH-64D Apaches, for example, is manned by Soldiers with 61 different MOSs. Many of them are low-density MOSs, requiring unique and special training. Training must be prioritized and specialized. You save time by consolidating those low-density skills from all echelons and units.
Floor Time. Floor time is the amount of time aviation mechanics actually spend maintaining aircraft. Commanders must ensure aviation mechanics are proficient in basic soldier skills in addition to being able to accomplish their maintenance mission. The level of actual maintenance performance time generally does not achieve or sustain required RLs, nor does it maintain required proficiency levels.

Required floor time can be projected and needs to be briefed at QTBS. If sustainment maintenance and field maintenance projected floor time is inadequate, commanders and staffs need to determine why and how they can increase time to maintain the aircraft for mission success.

Maintenance Management is required at all levels. Maintenance flow must dovetail with operational and training requirements, and be projected on unit training calendars. Operational surges, cause maintenance surges before, during, and after training exercises and operations deployments. Commanders at all levels must realize this and plan maintenance accordingly.

Problem-parts-people-plan-tools-time provides a methodology for aviation commanders and staffs to conduct their aviation maintenance analysis and needs to be accomplished. This will enable commanders to synchronize efforts across the maintenance organizations to achieve his operational goals.

AIRCREW TRAINING PROGRAM AND COLLECTIVE TRAINING

7-14. Part Two of this TC discusses, in detail, individual crewmember and initial crew training in the ATP that is the foundation for unit collective training. This part of the TC addresses those procedures and techniques commanders use to accomplish the next higher level of training-collective proficiency in all assigned METL tasks.

7-15. Part Three of this TC establishes no collective unit requirements. While the information and procedures contained herein are not regulatory, their use by commanders and staffs is strongly encouraged.

7-16. Collective training must follow the same crawl-walk-run process used in individual training.

• Commanders must ensure that their ATP develops RCMs and NCMs to be proficient in base, mission and additional tasks.

• Commanders then establish short-range, long-range, and near-term training plans to ensure that crews maintain proficiency in base, mission and additional tasks, as they train to proficiency in unit collective tasks.

7-17. SP/IP/UT/SI/FI/PCs, TACOPs Officers and junior leaders are keys to successfully implementing a collective training program. PCs and TACOPS officer supplement IPs and NCM trainers during collective training of rated and nonrated unit personnel. Company commanders and platoon leaders schedule, conduct, and evaluate collective training. Commanders at every level must develop subordinates that can conduct and evaluate training. Mentoring of junior leaders must occur both from their leaders and from those technically proficient instructor and tactical operations personnel they lead.

AVIATION TRAINING MANAGEMENT

Closing the gap between training, leader development, and battlefield performance has always been the critical challenge for any army. Overcoming this challenge requires achieving the correct balance between training management and training execution.

FM 7-0, Training for Full Spectrum Operations
7-18. Training management focuses leaders on the science of training in terms of resource efficiencies (such as people, time, and ammunition) measured against tasks and standards (figure 7-4). As with other units, the availability of resources does not affect METL development in an aviation unit. However, resources for training are always a major challenge as flying hours, maintenance requirements, range and ammunition availability, and other missions continually impact training and METL proficiency. This process of training management must be reinforced in our professional military education courses to assist our leaders in the planning and execution of training.

![Figure 7-4. Aviation training management](image)

TRAINING PROCESS

7-19. The Army training management cycle is a foundation of the training process. The present divisional structure for ground maneuver, fires, and logistical support fits well for a green, black and red training cycle system. Because of the structure of combat aviation brigades the implementation of this three-cycle time management system is impractical, dictating that a modified green-red time management system be used. Since the primary consideration is the identification and protection of prime-time training periods, training plans (long, short and near-term) should be coordinated and linked to those of supported units. Aviation training is a matter for discussion at all QTBs. The aviation commander’s battle focused ATP, maintenance management; flying/simulation hour requirements, flying-hour resourcing, and risk management are critical factors in the management of aviation training. They are relevant to any discussion focused on aviation training, to include the discussion of specifics at aviation unit QTBs, and the impacts of these factors at supported and supporting unit QTBs. All resources must be in place for a unit to be able to accomplish effective training. Senior commanders must ensure that the aviation brigade has the same opportunities, time, and resourcing as the other brigades to adequately prepare and train for accomplishment of the METL. To do this effectively, supported and supporting commanders should participate in each other’s QTBs.
RESOURCES FOR TRAINING

7-20. The primary source of funds for aviation training is the HQDA FHP for aircraft and the SHP for simulator contractor support. Flying/simulator hour allocations at the department level are based on TRADOC approved unit CATS. Linked to readiness (AR 220-1) and resourcing (FHP/SHP), the CATS is intended to set the resource baselines for individual, crew, and collective training proficiency. The FHP includes flying hours and the requisite funding to train each aircrew a certain number of hours per month. The SHP includes the requisite funding and operation of our individual/crew and collective simulators to support the commander’s training program.

7-21. Although the flying hours and funding are linked at HQDA, historically they have become separate entities as they are filtered down to unit level. In order for a unit to execute its FHP (train to and sustain required RLs) aviation commanders must be given the responsibility to manage hours and funding. Since the primary challenge is maintenance, procedures and programs need to be put into place that will enable the command to plan for and use these yearly funds for maintenance and training.

7-22. Historically, the FHP/SHP is under-executed in many units, yet units are still rated as ready. This apparent disconnect raises fundamental questions regarding Army aviation training strategies, resource requirements, and readiness reporting credibility. The HQDA readiness perspective is quite different for aviation brigades and battalions where simply executing flying hours has no meaningful readiness implications. Commanders and staffs at all levels must understand and work the FHP/SHP resourcing processes. At installation level—

- Hour’s resourced need to be correlated with dollars resourced.
- All funded resources (hours and dollars) need to be released to aviation commanders at the beginning of the fiscal year (FY).
- Maintenance programs need to be initiated that provide long-term stability from year to year and enable 1-year funds to be obligated.

TRAINING PLANS

GENERAL

7-23. This section describes the training management cycle and training plan development. The training management cycle is METL-based and depends on continuous feedback. This feedback is a common thread throughout the planning process. FM 7-0, FM 1-100, and the MTP provide detailed information on training management.

DEVELOPING THE UNIT MISSION ESSENTIAL TASK LISTING

7-24. This is the initial process for developing a battle-focused, long-range training plan. The METL is an unconstrained statement of tasks required to accomplish wartime missions. It must be continuously reviewed and cross walked with the unit MTOE, CATS, and MTP. A unit’s METL must support and complement the METL of the next higher headquarters and be based on the wartime mission. A generic mission statement for the battalion is in the MTOE. With this information and the commander’s guidance, the S-3 can prepare a proposed METL for discussion with company commanders. After incorporating results from these discussions and examining implied battle tasks, informal coordination can be made with the brigade S-3. The battalion commander then approves the unit’s proposed METL and sends it to the brigade commander for approval. The battalion’s METL is approved by the brigade commander or sent back for revision. (Figure 3-1, page 3-2, illustrates the relationship between the METL and the ATP.)
TRAINING PLAN PROCESS

7-25. The following is a sample checklist for developing a battalion-level METL:
- The brigade commander provides a restated wartime mission statement and approved METL to the battalion commander.
- The battalion commander identifies specified and implied tasks.
- MTP mission-to-collective task matrixes identify collective tasks that support critical wartime missions and other tasks required to execute war plans.
- All collective tasks are listed in the sequence in which they are expected to occur during the wartime mission.
- Subordinate commanders, their staffs, key WO, and key NCOs analyze the restated wartime mission. Then from the task list, they select only those tasks essential to accomplishing the restated wartime mission. These tasks are submitted to the brigade commander for approval.
- Upon the brigade commander’s approval, these mission-essential tasks become the battalion’s METL and battle tasks. (These tasks should not be confused with the all-inclusive collective task list found in the MTP.)

Note. A unit’s METL is stabilized when approved. Normally, the METL is modified only if changes occur in wartime missions.

- From the approved METL, the battalion commander establishes training objectives. These are based on the battalion commander’s own vision, guidance from higher commanders, and guidance in doctrinal manuals.
- An initial METL assessment sets the starting point for developing the battalion’s training strategy. An ongoing evaluation process ensures that the battalion continues to focus on preparing for its wartime missions.
- The training assessment is the battalion commander’s continuous comparison of the battalion’s current proficiency with the proficiency required to fight and win on the battlefield. The battalion commander, staff, and subordinate commanders assess the battalion’s current proficiency of mission-essential tasks against the required standard. The company commander then indicates the current proficiency by rating each task as “T” (trained), “P” (needs practice), or “U” (untrained). The outcome of the training assessment identifies the company’s future training requirements.
- Coordinating with the CSM, company commanders, senior WO, first sergeants, senior NCOs, and the staff, the battalion commander updates the commander’s training assessment based on the new METL, any training evaluations available, and the personal observations of team of leaders. From these, the battalion commander develops the training vision, goals, and priorities that will be published as the battalion commander’s guidance. (Face-to-face coordination occurs throughout this process.)

7-26. The MTP training and evaluation outlines (T&EOs) are objective conditions and standards that describe the situation or environment and outcome criteria that the unit must meet to perform the collective tasks. Every task must have a condition and a standard so that all training can be evaluated against the standard.

7-27. Future training should be planned, sufficiently resourced, and conducted to achieve and/or maintain a level of proficiency within the “Band of Excellence.”

Note. More information on the training planning process can be found in FM 7-0 and the appropriate MTP.
TRAINING STRATEGY

7-28. The training strategy is developed using the outcome of the training assessment. This training strategy is then issued to subordinate commanders through the commander’s training guidance (CTG).

NEAR-TERM PLANNING

7-29. Used for the monthly training schedule, the S-3—
 - Reviews TADSS and allocates training resources to specific trainers.
 - Ensures that training events are well structured, efficient, realistic, safe, and effective.
 - Must ensure that informal evaluation and feedback by trainers and senior leaders are continuous and that formal evaluations are included in training plans. (Evaluation documentation can range from annotated T&EOs to CTC take-home packages.)

LONGER-RANGE PLANNING

7-30. Used for the new annual training calendar, the S-3—
 - Carefully studies the brigade CTG and key training events in which the unit will participate.
 - Selects appropriate training scenarios with supporting operations plans from the training support packages.
 - Coordinating with the brigade, division, and the military community, chooses training event dates that do not conflict with other key calendar events.

7-31. The tools used to develop a long-range training plan are the battalion training strategy, the brigade and division’s CTG, and the brigade and division long-range training calendar—12 to 18 months out. These calendars may be viewed by subordinate commanders during their unit training planning.

QUARTERLY TRAINING CALENDAR

7-32. When preparing the quarterly training calendar, the S-3—
 - Studies the brigade CTG and the battalion annual training calendar.
 - Identifies, allocates, and coordinates short lead-time resources such as local training facilities.
 - Pays particular attention to CTC lessons learned when developing training objectives and tasks to include in an FTX operations order.
 - Allocates time on the AVCATT and other critical training resources.
 - Cross-references each event with specific training objectives and coordinates with all supporting agencies, the battalion staff, and unit commanders.

AIRCrew TRAINING PROGRAM

7-33. The ATP is an integral, not separate, part of the commander’s overall unit training program and it should be briefed at each QTB. Proficient aircrews are essential to effective collective training. No small challenge, aviation leaders must maintain a balance between individual, aircrew, and collective training. The ATP, mandated by AR 95-1, is a structured and prescriptive management and evaluation program focused on training Army aircrews. The ATP applies to all Army aviators in operational flying positions, nonrated crewmembers in designated flying positions, and nonrated crewmembers who perform crew member duties according to AR 600-106. Developed in accordance with this TC, the appropriate ATMs, and the ATP includes training of the base, mission and additional tasks necessary for the accomplishment of a unit’s METL. In today’s command operating environment, small unit leadership is critical to mission execution. For aviation, small unit leadership equates to AMC. Training must be tailored to ensure these elements are integrated into the training regime of our units. Leader supervision and participation at all levels is essential to the successful execution of the ATP. Commanders will use this TC, ATMs, UTLs, FM 3-04.140, FM 7.1, and the CATS to develop the unit’s ATP.
7-34. The ATP, with the factors that affect it, is a major consideration in developing the long-range training plan. Consideration must be given to—

- Individual pilot proficiency.
- Aircrew proficiency (battle-rostered crews).
- The unit maintenance program.
- Flight-hour allocation to supported units when aviation training is conducted during supported unit missions.
- Individual and aircrew training that is usually accomplished while not in a support role; for example, emergency procedure training, flight evaluations, and instrument proficiency training.
- Pilot training accomplished in crew and collective simulators/simulations.

7-35. Units are required to have an ATP addressing specific requirements for conducting training, evaluation, assessment, and program revision. Commanders should use multi-echelon training objectives, scenarios and STXs to facilitate the development, execution, and continual assessment of their training program. Scenarios and STXs for individual, crew, and collective training must be mutually supportive and progressive in intensity and complexity. Effective individual and crew training programs form the foundation for an aviation battle-focused training program. These programs produce combat ready crews and are the basis for the unit’s collective training program. Collective training must focus on combined arms/joint operations across the spectrum of the unit’s METL. Limited resources, environmental restrictions, new and sophisticated aircraft mission equipment packages, and myriad contingency operations will all impact on the commander’s ability to train and maintain proficiency at all levels.

MISSION ESSENTIAL TASK LIST TASK SUSTAINMENT

7-36. At the brigade level, the final assessment of the requirements for a unit to be a “T,” “P,” or “U” for a specific METL task must be agreed upon and once completed, becomes a contract between the aviation brigade commander and the division commander. Commanders should review the collective training sustainment requirements as outlined in the specific CATS for their type of unit. Crewmember sustainment training requirements are met by completing the required number of iterations for each mission as listed in the CATS for that type of unit. The CATS is designed to produce trained “T” companies that will result in “P” battalions, as a minimum.

PLATOON COLLECTIVE TRAINING

7-37. A battle task is a staff or subordinate organization mission-essential task that is so critical that its accomplishment determines the success of the next higher organization’s mission-essential task. Although platoons do not have METLs, the platoon leader plans, executes, and assesses platoon collective training. Crews that are trained in the unit’s missions, train together to form proficient platoons.

COMPANY COLLECTIVE TRAINING

7-38. The company commander plans, executes, and assesses company collective training. Platoons that are trained in the unit’s missions, train together to form proficient companies. Company commanders train platoon leaders and assess company and platoon collective training.

BATTALION COLLECTIVE TRAINING

7-39. The battalion commander plans, executes, and assesses battalion collective training. Companies that are trained in the unit’s missions, train together to form proficient battalions. Battalion commanders issue guidance and assess company and platoon level collective training.
BRIGADE COLLECTIVE TRAINING

7-40. The brigade commander plans, executes, and assesses brigade joint and combined arms training. The brigade commander issues guidance and assesses battalion and company level collective training.

GUNNERY TRAINING

7-41. Because of the resources required, gunnery training is usually planned and executed at the battalion level. However, the focus of the training—from individual through crew and collective—is based on the aggregate level of gunnery proficiency for the battalion. In other words, if the assessment of the battalion indicates that individual proficiency is lacking, that will be the focus of the battalion’s gunnery training until assessments indicate that a sufficient number of individuals have attained the required levels of proficiency.

INDIVIDUAL THROUGH COLLECTIVE TRAINING INTEGRATION

7-42. While ATP progression is not part of collective training, it is the base on which collective training is built. Crewmembers who are designated RL 1 are in collective proficiency training and individual proficiency sustainment training. (Specific guidance on ATP progression is in part two of this TC. See figure 3-2, page 3-4, for an illustration on the relationship of individual and crew training to unit collective training.)

7-43. To achieve maximum training results from limited resources, planning must be detailed and flying hours must be dedicated to maintaining individual and crew proficiency. Though detailed, this training must be flexible allowing the commander to take advantage of unplanned and unforeseen training opportunities. Integrating individual continuation training into collective training events makes maximum use of every hour of flight time. Commanders must ensure incorporation of collective training into every element of the ATP. Battalion commanders must instill this principle in their company commanders and in turn, company commanders to their platoon leaders.

7-44. The link between the collective mission-essential tasks and the tasks that support them is critical to the battle-focused training concept. The commander plans, prepares, executes, and evaluates training using mission-related scenarios based on the unit’s METL. The commander selects critical battle tasks from the subordinate unit’s METL and emphasizes the execution of these tasks during training and evaluation. Implementers can assist the commander’s effort at every step and level of this process. Input from the bottom up is essential because it identifies training needs to achieve task proficiency on identified tasks that can be integrated into training events. After-action reviews and critiques are useful tools that guide the commander in assessing the unit’s METL proficiency and tailoring future training to meet these proficiency requirements.

7-45. A reduction in the flying-hour program will result in a decrement of a unit’s METL proficiency with a corresponding impact on readiness. Training an aviation unit is expensive; however, it is more expensive if not managed properly. Dollars expended on a poorly resourced ATP provide a very low return on investment. Potentially, aviation units will operate in an environment of enemy radar and air defense artillery (ADA). It takes time to develop the skills associated with nap-of-the-earth/terrain flight. In preparation for an encounter with a technologically advanced enemy, aviation units must have maximized every flight training hour beforehand. For example, if during collective training, an attack helicopter unit flies along a route at altitude with no threat radar to contend with, to an objective without any enemy threat, to engage simulated targets in the objective area, great training opportunities are missed, both individual and collective.
AVIATOR PROFESSIONAL DEVELOPMENT

7-46. Aviation leaders must be proficient aviators, capable of performing individual and crew duties as pilots, to ensure that they are capable of fighting their systems and units. It is paramount that special attention be paid to providing opportunities for the development and sustainment of junior officer and warrant officer flying skills. PC proficiency leads to aviation leader proficiency as a flight lead, air mission commander, and ultimately the commander of units operating and fighting with combined arms and joint forces. A battle focused, proficiency-based ATP is the commander’s published plan that provides a tailored training focus for leader development at the individual, crew, and collective levels (crew through brigade battle staff). It is not enough to be proficient in the system; we must be proficient in integrating the system into the scheme of maneuver. This professional development must be included in our Captain Career Course, Pre-Command Course, Aviation Senior Leader Conference, and Division Commander Course to ensure we give our leaders the right tools to execute our training.

7-47. The junior aviators of today are the commanders, maintenance, TACOPS, safety, and standardization officers of the future. Commanders must encourage and support the establishment of personal goals by aviators. The command must foster development of the skills and knowledge required to successfully move Army aviation forward. The ultimate objective of the professional aviator development beyond the level of individual aviator and crewmember is to produce highly skilled aviation leaders and combined arms officers and Soldiers. To this end, aviation commanders and aviators must look at intermediate skill positions as stepping-stones to higher responsibility.

7-48. The goal of every professional aviator is a logical parallel progression of abilities and responsibilities. As the aviator’s tactical and technical skills evolve, so should the assigned levels of responsibilities. The professional aviator’s first targeted level of achievement should be selection and designation as a PC. With this in mind, members of the chain of command from platoon leader through battalion commander, must strive to gain the knowledge and expertise to achieve RL 1 PC to “set the example” for subordinates. The professional aviator should then continue to develop tactical and technical skills with the intent of designation as flight lead. Continued professional development of aviation skills should lead to selection as an AMC. These are not easy tasks. Many responsibilities accompany these designations that require study, practice, and training to achieve. Only by developing skilled aviation professionals, who understand the capabilities and the risks of Army Aviation operations, can we train leaders and trainers that our demanding profession requires.

AIRCREW TRAINING PROGRAM FORMS AND RECORDS

7-49. The ATP records system provides commanders with a comprehensive performance record on each crewmember in their unit. Having accurate and up-to-date records cannot be over emphasized. It ensures that crewmembers are properly trained. ATP records serve the following functions:

- They document individual and crew training and collectively they are a continuity file used by the commander to determine the unit’s overall level of training.
- ATP forms and records are maintained for each rated and nonrated crewmember and noncrewmembers performing crew duties. This is the principle means by which individual training information is transferred from the losing unit commander to the gaining unit commander when an individual is transferred.

Note. See appendix A for a complete description and example of ATP (IATF) documentation.

7-50. ATP records are not the exclusive domain of the trainers that maintain them and should be used by commanders as a first step in a unit’s bottom-up assessment of training. These records must also be used to document milestone and achievement awards accumulated by the aviator. (For example, the safety officer will annotate when an individual receives the “Broken Wing” award, a flying-hour award for safety in accordance with appendix A.)
This page intentionally left blank.
Chapter 8
Collective Training Factors

COLLECTIVE TRAINING AND UNIT READINESS

C-LEVEL RATING

8-1. Every month, commanders are required to report their assessment of how well their unit meets the prescribed levels of personnel strength, equipment availability, and unit training to conduct their wartime or primary missions. Although this is an intricate process as detailed in AR 220-1, the resulting readiness designation is the unit’s C-level. The five C-levels are as follows:

- C-1. Indicates that the unit possesses the required resources and is trained to undertake the full wartime mission for which it is organized or designed.
- C-2. Indicates that the unit possesses the required resources and is trained to undertake most of its wartime mission for which it is organized or designed.
- C-3. Indicates that the unit possesses the required resources and is trained to undertake many, but not all, portions of the wartime mission for which it is organized or designed.
- C-4. Indicates that the unit requires additional resources or training to undertake its wartime mission, but it may be directed to undertake portions of its wartime mission with resources on hand.
- C-5. Indicates that the unit is undergoing a service-directed resource action and is not prepared, at this time, to undertake the wartime mission for which it is organized or designed.

Note. Regardless of the C-level of the unit, it generally indicates the unit’s training requirements. That is, commanders constantly ask themselves what training is required for the unit to achieve and sustain the highest C-level possible with the available resources.

TRAINING READINESS STATUS

8-2. As stated above, the unit’s C-level is based on personnel, equipment availability, and training. The unit’s T-level is based on the commander’s evaluation of the current ability of the unit to employ effectively its systems and equipment to perform those critical tasks required by its wartime missions. Thus, given sufficient personnel and equipment, the ATP has a pivotal impact on the unit’s ability to conduct its wartime mission. The T-level is determined by applying the following training metrics:

- T-Level. The unit training status level that reflects the percentage of the METL for which unit personnel are trained (calculated according to AR 220-1).
- T-Days. The unit training status level that reflects the number of training days estimated by the commander that are needed by the unit to reach full METL proficiency (as determined according to AR 220-1).

Note. The T-level is a measure of how well the unit can perform its METL and how long it would take the unit to be proficient in its entire METL.
MISSION ESSENTIAL TASK LIST PROFICIENCY’S IMPACT ON TRAINING REQUIREMENTS

8-3. Commanders use the applicable MTP standards of proficiency to evaluate platoons, company-sized units, and battalion-sized units. The commander’s assessment of the unit’s METL proficiency is in terms of trained (T), needs practice (P), or untrained (U). Each METL task is separately assessed. If the assessment is P or U, then the commander must develop a training plan to raise the current T-level to a fully T status. If the assessment is T, then the commander must develop a training plan to sustain that level of training. As dictated in AR 220-1, paragraph 7-1d(3), commanders will use the Department of the Army approved CATS, in conjunction with the appropriate MTP, to develop their training plans. While the MTP establishes the collective task performance conditions, standards, and performance measures, the CATS establishes the training conditions and performance intervals required for each collective task to gain and maintain task proficiency.

8-4. As detailed in FM 7-0, a top-down process is used to develop the unit’s METL, while a bottom-up process is used to evaluate the unit’s METL proficiency. During this bottom-up assessment, at some level (generally the platoon), basic aircraft skills and knowledge by individuals and crews are translated into unit proficiency. Aggregating individual training proficiency to determine unit training proficiency is part objective and part subjective, based on several factors. To do this, the commander must ask and answer many questions, including—

- How many fully manned and qualified crews are available (according to AR 220-1)?
- Although qualified crewmembers may be RL 1 and fully trained in their aircraft, are they proficient in conducting the unit’s collective/METL tasks?
- Although the unit may have been evaluated as proficient in a collective/METL task, how has personnel turbulence affected unit proficiency in this task since this evaluation?
- What is my plan and the resources required for the formal assessment of my METL tasks?
- If I am forming an aviation task force, how do I determine its METL and what is my plan to assess its METL proficiency?

INDIVIDUAL PROFICIENCY IN COLLECTIVE TASKS

8-5. One of the key issues that the commander must address is how to determine the collective training requirements of crewmembers that have attained RL 1. This is an acknowledgment of the fact that a group of individuals and crews, proficient in their respective tasks, is not synonymous with a unit proficient in its collective/METL tasks. Newly designated RL 1 crewmembers, and those with little or no experience in any of the unit’s collective tasks, must gain proficiency in those collective tasks. To do this, they must function as a member of the unit while executing these collective tasks.

EVALUATION OF COLLECTIVE TRAINING

8-6. The commander states what tasks the unit must be able to accomplish through the unit METL and the MTP provides the standards that must be achieved when performing collective METL tasks. SPs/IEs/IPs and enlisted standardization personnel evaluate individual and crew training and assist the commander in evaluating collective training. Commanders must train platoon leaders to evaluate collective training at the platoon level; battalion and squadron commanders must train company and troop commanders to evaluate collective training at the platoon and company/troop level. The unit SOP, the CATS, and the MTPs are resources that commanders can use to assist this leader training process. Commanders and leaders who cannot evaluate collective training cannot accurately assess the readiness of their unit to accomplish its METL.

COLLECTIVE TRAINING

We must give aviation units the same level of rigor that we gave ground units in the mid-80s with the CTCs.

GEN Eric Shinseki, CSA
INDIVIDUAL AND COLLECTIVE TRAINING INTEGRATION TRAINING

8-7. To achieve maximum training results from limited resources, planning must be detailed and flying/simulator hours must be dedicated to maintaining individual and crew proficiency as outlined by the aviation CATS. The integration of individual continuation training into collective training makes maximum use of every hour of flight time. Units must incorporate collective training into every element of the ATM. The link between the collective mission essential tasks, and the ATM and additional (3000 series) tasks that support them, is critical to the battle focused training concept. The commander plans, prepares, executes, and evaluates training using mission related scenarios based on the unit’s METL. He selects critical battle tasks from the unit’s METL and emphasizes the execution of these tasks during training and evaluation. These critical battle tasks become subordinate unit’s METL. All aviation enablers (UAS, air traffic services [ATS]) must be integrated into collective training events at every opportunity like gunneries, FTXs, and command post exercises (CPXs).

8-8. Integration of battle command training within our collective tasks will ensure that our commanders and staffs have the capability to provide C2 to our formations in the most efficient means. The battle command training strategy identifies the requirements and resources needed for battle command training to provide commanders the tools to train individual operators, leaders, and battle staffs across the entire spectrum of operations. It enhances battlefield decision-making of leaders at all echelons. Battle command as a weapon system will be a reporting item under AR 220-1.

COLLECTIVE TRAINING EXERCISES

8-9. During the training year, commanders will schedule exercises based on the type of collective training their unit requires as prior assessments dictate. As outlined in FM 7-0, the crawl-walk-run method of training fits well into collective training exercises also. Individual and crew training are the crawl stage of training. The STX and other small exercises, which focus on one battle task or a single METL task, are the walk stage. The FTX, CTC, and so forth are the run stage of training. Again, commanders cannot skip stages. STXs are mission-related, limited exercises designed to train one collective task or a group of related tasks and drills through practice. Often synonymously used are the terms “situational exercise” and “scenario.” Based on the unit’s METL, commanders may modify or expand existing STXs to meet special mission requirements. These exercises aid in transitioning from individual and crew proficiency to collective task proficiency.

8-10. The following training exercise benefits uses a STX as a model but these benefits apply to all levels of training exercises (STX, FTX, CTC). STXs will—

- Focus training on weaknesses identified in previous training and evaluations through the critique and after action review.
- Provide repetitive training on parts of missions.
- Save time by providing information needed to develop training.
- Allow the aviator, crew, or unit to practice selected critical parts of the mission before rehearsing the entire mission.

8-11. Commanders should develop STXs as a training and ATP management tool. Preconstructed STXs, based on a thorough training needs analysis, provide limited scope, short-term exercises that are central to sustainment training. STXs should permit simultaneous accomplishment of base, mission, additional and collective tasks.

8-12. Input from the unit’s implementers allows the commander to structure collective training that includes individual and crew proficiency training. Performing collective training tasks will then enhance and sustain individual proficiency. This following guidance is for proficiency sustainment for individual and crew training:

- Implementers are not required to develop the unit collective scenarios and STXs but are critical to their successful development.
Chapter 8

- Rated and nonrated implementers should review all individual and crew training scenarios and STXs to verify that all tasks on the CTL are included for performance by crewmembers in sustainment training.
- Scheduling of CTL or METL iterations should be monitored to ensure that task iterations are performed at a pace that maintains proficiency and does not peak or wane.

8-13. The following steps will help the commander develop STXs that support METL requirements:
- Select the battle task(s) to be performed. A battle task is a task that must be accomplished by a subordinate unit organization if the next higher headquarters is to accomplish a mission essential task.
- Establish the conditions and standards for the selected battle task. Use the appropriate ATM/MTP.
- Develop a mission statement to support the battle task.
- Identify the company battle task that supports the battalion METL task. For example—
 - Supported battalion METL task. Conduct combat operations.
 - Company battle task. Conduct a deliberate attack.
 - Identify collective supporting tasks. Use MTP tasks.
 - Apply time standards.
 - Identify required references/resources.

8-14. All training exercises should have realistic training objectives. Any training exercise that focuses on bringing up the proficiency level of a unit and replicates actual combat conditions, as nearly as possible, will have a beneficial effect on training. This is especially true at battalion level and below. Virtual and constructive simulation training cannot replace live training. However, they can supplement, enhance, and complement live training to sustain unit proficiency within the “Band of Excellence.” Based on resources available (such as time, ammunition, simulations, and range availability), commanders determine the right mix and frequency of live, virtual, and constructive training to ensure efficient use of allocated training resources. The commander must ensure that the STXs do not become “routine” training flights. The commander will clearly define the exercise goal and all participants must understand the objectives in their role(s).

8-15. The ARTEP/MTP gives units a clear description of “what” and “how” to train to achieve wartime mission proficiency. They elaborate on wartime missions in terms of comprehensive T&EO. They also provide exercise concepts and related training management aids to help field commanders plan and execute effective unit training. The applicable ARTEP/MTP gives examples for developing and using STXs.

COMBAT TRAINING CENTER PREPARATION

8-16. CTC rotations are valuable training tools when units have the opportunity to plan, prepare, execute, and assess/recover. Units must plan far enough in advance and use the ARTEP/MTP, CATS, unit METL, and ATP when planning a CTC rotation to maximize the benefit from the resources allotted.

8-17. Environmental training for CTC rotations is critical. Home-station training should replicate as closely as possible the actual CTC conditions. It is not possible to replicate the exact conditions of the CTC at home station. Unit commanders should plan for flight crews to spend time during force buildup at the CTC to become proficient in the new environment. Commanders should also take full advantage of flight simulator training to replicate the CTC conditions during their preparation.

8-18. Commanders must be cautious since some aviation units that deploy to a CTC too often during the same training year may actually experience a drop in overall training and equipment readiness. This “law of diminishing returns” is most prevalent in assault and general support battalions. For example, as a unit returns from a CTC rotation and prepares to move into the assessment and recovery phase of the training cycle, another brigade task force in the division is preparing for its CTC train up and requires support from the aviation community. A unit may skip, or severely curtail, the assessment, recovery, and planning phases of the training cycle and move directly back into the preparation and execution phases. For these
reasons, a unit might actually find itself at a lower state of training and overall readiness at the conclusion of a subsequent CTC rotation than it was after the completion of the first.

8-19. AH-64s should have the update with new terminology, multiple integrated laser engagement system (MILES)/air-ground engagement system (AGES) II installed prior to departure from the home station. Once installed, the attack battalion should conduct a MILES/AGES gunnery to ensure that the systems are operational and the crews are proficient in operating the MILES/AGES system.

TRAINING SIMULATIONS

8-20. Simulation systems make staff and unit training easier to plan and execute and less expensive. Brigade and battalion simulation, Joint Army Navy Standard, AVCATT, and the ATX are all examples of the simulation systems and exercises available for collective training. Simulations greatly decrease the cost of training while allowing the staff and unit to train on tasks too expensive and possibly too dangerous to perform on a routine basis during a field exercise. As with all training, whether live, virtual, or constructive, leaders must be actively involved during all stages of planning and execution. Some of the benefits commanders and other leaders will gain through simulation are as follows:

- Simulation is a low-distraction and low-risk environment. Training takes place without the added attention commanders must give to nonmission essential tasks. Leaders can focus on the battle skills pertinent to the particular simulation.
- Leaders go through all of the planning, rehearsal, and execution steps necessary for actual missions. However, when discrepancies arise, the leadership can stop the planning, rehearsal, or execution and guide subordinates to accomplish a particular step correctly.
- A simulation provides a chance for leaders to assess, validate, and change SOPs, TTP, and so forth.
- Many simulations have a “playback” capability. Commanders can start the simulation over at any moment within the battle to retrain a deficient task.
- Leaders can “freeze” the battle, conduct an AAR on recently simulated events, and return to the battle at the instant it was stopped. This affords the commander the ability to change the course of the battle to accomplish those collective tasks that the simulation was designed to train or reinforce.
- Often commander’s can observe the unit through a “stealth” mode. Commanders can see and hear what the crew sees and hears. Commanders can then correctly assess their actions and may discover tasks that may require additional training.
- Collective simulation training is a chance to train task force staffs or units that have previously not operated together. Commanders and staffs can work as a cohesive unit on the battlefield only after having performed collective tasks together prior to actual combat.
- Ground units, ranges, training centers, and so forth may not be available when the commander schedules the unit for training. Through simulation, the commander can have all of those assets required to properly conduct beneficial training at the time the unit requires that training.
- The commander and other leaders can focus on weaknesses that need improvement and identify strengths that may not have been readily visible through live training events.
- Simulation can also provide an ASE environment beneficial to both aircrews and the staff. Leaders may also have to adjust the battle plan according to previously unknown ADA threats.
- There is also a reinforcing benefit to many supporting tasks.
BATTLE-ROSTERING

8-21. Battle-rostering should complement the aviation standardization and aircrew coordination programs. When commanders battle roster crews, they should consider the individual aviator’s flight and unit experience, individual personalities, and individual maturity. Battle-rostering increases combat readiness and performance by creating a stable atmosphere, where individual strengths are complemented, weaknesses are minimized, and crew coordination is enhanced. Battle-rostering takes the above considerations and creates a team that maximizes the combat performance characteristics of that crew and aircraft. Battle-rostering is most beneficial when used in coordination with a solid aircrew coordination program.

8-22. Commanders should consider the individual’s aviation, flight, and unit experience during the battle-rostering process. They also should consider individual personalities and maturity. For example, a WO1 PC, experienced in the unit’s mission, could be battle-rostered with a newly assigned CW4. When there is a change in crew personnel, the commander must determine the proficiency of the newly constituted crew and understand that additional training may be required.

8-23. Commanders must be aware that prolonged battle-rostering of the same crewmembers may produce crew complacency, overconfidence, implicit coordination behavior, and nonstandard procedures, which result in a degradation of crew proficiency. Battle-rostering is beneficial, but only when used for short periods such as training exercises, STXs, operational deployments, and gunnery training.

ATTACK/RECONNAISSANCE HELICOPTER COLLECTIVE GUNNERY

8-24. The helicopter gunnery program begins with individual qualification and progresses through crew qualification to unit collective training. Commanders will use FM 3-04.140 and DA PAM 350-38 to develop a progressive and continuous helicopter gunnery program. While table VIII is the highest level of individual/crew qualification, the advanced gunnery tables (table IX through table XII) are the capstone of any unit’s gunnery training program. The advanced tables provide the commander with a tool to train and assess the unit’s collective gunnery skill. These tables emphasize—

- C2.
- Situational awareness.
- Tactical placement/movement within the battle area.
- Communications flow of tactical information.
- Target acquisition.
- Engagement priorities.
- Fire distribution.
- Discipline of fires.

8-25. Commanders must consider the following factors when developing collective gunnery training programs:

- The unit master gunner is the primary special staff officer for all gunnery-related matters.
- Ammunition is resourced using DA PAM 350-38.
- Ammunition used for combined live fire exercises (CALFEXs), STXs, and other training events or demonstrations must not be drawn against STRAC allocations; they must be resourced separately. Failure to do so will result in insufficient ammunition to qualify crews annually as required by FM 3-04.140.
- Simulators and simulations are used to enhance and maintain gunnery proficiency at crew-level skills.
- The unit METL and MTP must dictate the tactical scenarios, weapons mix, and task organizations used when conducting advanced gunnery tables.
- CALFEXs are not advanced gunnery tables.
DOOR GUNNERY COLLECTIVE TRAINING

8-26. Collective training should occur during the conduct of gunnery, whenever possible, by developing tactical scenarios or TSPs for use during each gunnery or CALFEX. To make crews and units work together as a team, the commander must execute a well-planned, realistic, and consistent training program. The commander’s training assessment and planning are essential to the success of a gunnery-training program that will maximize combat ready crews. Door gunnery collective training tables should emphasize the following:

- C2.
- Situational awareness.
- Communications flow of tactical information.
- Target acquisition.
- Engagement priorities.
- Fire distribution.
- Discipline of fires.

INTEGRATION OF ADDITIONAL TRAINING REQUIREMENTS

8-27. All aviation training requirements should be listed in the ATP and documented in the unit short-term and long-term training plans. There are also areas of special interest that have unique requirements and directly affect the unit’s ability to perform its METL missions. Whenever possible, commanders must integrate these additional training requirements into collective training. While some of these requirements focus on individual skills and knowledge, others (such as environmental training) have a large collective component—formation landings in a sand/dust environment versus single aircraft approach to the same conditions.

8-28. Additional training requirements that should be specifically integrated into collective training include but are not limited to the following:

- AMC training.
- CBRN training.
- Environmental training.
- Deck landing operations training.
- Personnel recovery training.
- ASE/EW training.

NIGHT VISION DEVICE TRAINING

8-29. NVD training is essential to survival on the battlefield. This required training will instill crewmember confidence and build proficiency in all base, mission(s), additional and collective tasks. Risk factors increase during this training; however, commanders should not reduce training in an effort to reduce risk. Proper, supervised, effective NVD training will itself reduce risk. Commanders must ensure they incorporate NVD training in all crew and collective task training. Collective NVD training presents many challenges to the unit, not the least of which can be administrative in nature. Dining facilities, installation offices and organizations, and support units are not structured to support around-the-clock operations when training in garrison. Commanders should coordinate outside support when possible and ensure NVD collective training is clearly established on the training calendar so that Soldiers can schedule those necessary appointments and training detractors outside of the collective NVD training periods.

AIRCREW COORDINATION TRAINING-ENHANCED

8-30. The CDR, USAACE, continues to direct the development and fielding of the ACT-E program. While this training is directed at cockpit coordination, commanders must also foster aircrew coordination within tactical formations during collective training.
Chapter 9

Flying-Hour Program

COMMANDER RESPONSIBILITIES

9-1. Commanders should—
- Base their FHP on the number of hours required to achieve and maintain proficiency at the individual, crew, and collective levels.
- Use the CATS that describe the unit’s collective task iteration and frequency required to sustain unit proficiency. (The specific aircraft ATM describes the crewmember’s training-hour requirements.)
- When resources are insufficient to maintain proficiency of all METL tasks, consult with the higher chain of command and prioritize the METL tasks. It is only possible to maintain proficiency of those tasks for which the commander is resourced.

9-2. To correctly develop a FHP, the commander should consider the following:
- CATS.
- The unit’s crewmember density.
- Crewmembers not assigned to the unit who also must be trained (for example, brigade staff).
- Annual crewmember turnover.
- The FAC of each position.
- RL progression.
- The number of aircraft assigned.
- Mission support requirements.
- Flying hours for aircraft maintenance.
- Current status of unit training.
- Directed training such as CTC rotations.
- TADSS available.

FORMULATING A UNIT FLYING-HOUR PROGRAM

9-3. In the example that follows, arbitrary data are used to show how the commander of an OH-58D(R) unit to determine the number of training hours required.
- Step 1. Determine the number of TOE assigned aviators. (TOE assigned aviators is 70.)

<table>
<thead>
<tr>
<th>Assigned Aviators</th>
<th>70</th>
<th>From TOE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Step 2. Determine the Annual Turn Over Rate of the unit. This number is derived by historical figures, PCS and retirements anticipated.

<table>
<thead>
<tr>
<th>Annual Turnover Rate</th>
<th>33%</th>
<th>Calculated Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Step 3. Calculate the projected number of newly assigned aviators.

<table>
<thead>
<tr>
<th>70 X 33%</th>
<th>23</th>
<th>Step1 X Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 4. Determine the number of hours required for crewmember training according to the appropriate ATM and historical data.

- Qualification Training. Aviators may be assigned to the unit who require additional training on aircraft assigned to the unit.
- RL 3 to RL 1. Determine the flight hours required for an aviator designated RL 3 to progress to RL 1.
- RL 2 to RL 1. Determine the flight hours required for an aviator initially designated RL 2 to progress to RL 1.

<table>
<thead>
<tr>
<th>Qualification Training</th>
<th>6</th>
<th>Per ATM</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL 3 to RL 1</td>
<td>40 Estimated</td>
<td></td>
</tr>
<tr>
<td>RL 2 to RL 1</td>
<td>24 Estimated</td>
<td></td>
</tr>
<tr>
<td>FAC 1 Aviator Continuation Training</td>
<td>70 Per ATM</td>
<td></td>
</tr>
<tr>
<td>FAC 2 Aviator Continuation Training</td>
<td>50 Per ATM</td>
<td></td>
</tr>
</tbody>
</table>

Step 5. Calculate the number of hours required for newly assigned aviators to attain RL 1. Factor the experience level of expected inbound personnel to gain a more accurate assessment. Below, two of the projected 23 newly assigned aviators are expected to require qualification training. Ten of the 23 are expected to be designated RL 3 and the remaining 13 are expected to be designated RL 2.

<table>
<thead>
<tr>
<th>Qualification Training</th>
<th>2 personnel X 6 hours = 12 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL 3 to RL 1</td>
<td>10 personnel X 40 hours = 400 hours</td>
</tr>
<tr>
<td>RL 2 to RL 1</td>
<td>13 personnel X 24 hours = 312 hours</td>
</tr>
</tbody>
</table>

Aviator Progression Hours: 724 hours

Step 6. Continuation training flying-hour requirements. Calculating continuation training requirements depends on the number of crews that are RL 1 throughout the unit training year and those designated RL 1 during some fraction of the training year. Multiply the number of FAC 1 and FAC 2 RL 1 aviators by their respective FAC level semiannual ATM requirements. Take into consideration the percentage of the training year remaining for those aviators who progress to RL 1 (step 5). The final number should reflect total crew, not individual hours.

FAC 1 Aviators, RL 1 entire training year	37 X 70 hours = 2590 hours
FAC 2 Aviators, RL 1 entire training year	10 X 50 hours = 500 hours
Newly assigned FAC 1 Aviators *(66% of)	19 X 70 hours = 887 hours
Newly assigned FAC 2 Aviators *(66% of)	4 X 50 hours = 133 hours

* 66% = 8 months of the training year, the average time newly assigned Aviators are estimated to be RL

Aviator Continuation Hours: 4110 hours

\[\div 2 \]

Crew Continuation Hours: 2055 hours

Step 7. Proficiency training hours. Determine the number of hours required to achieve and maintain proficiency in the unit’s METL tasks at the individual, crew, and collective level. This is in addition to those hours required for progression and continuation training.

Unit METL task proficiency 300 hours
Step 8. Determine the total number of hours required for assigned crewmembers to attain and maintain RL 1 for the training year by adding the progression hour total (step 5) to the continuation hour total (step 6).

<table>
<thead>
<tr>
<th>Aviator progression hours</th>
<th>724 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviator continuation hours</td>
<td>2055 hours</td>
</tr>
<tr>
<td>Unit METL task proficiency hours</td>
<td>300 hours</td>
</tr>
</tbody>
</table>

Total training hours: 3079 hours

Step 9. Support hours. Determine mission support requirements such as CTC rotations, FTXs, and so forth. This can be a block hour commitment or the number of aircraft required by hours per aircraft. Determine the number of total training hours (step 7) that can be accomplished concurrently during mission support. (This number is derived by historical analysis.) Subtract this number from the total support hours required. The result will be the additional hours that should be added by this step to the total unit flying-hour requirement.

<table>
<thead>
<tr>
<th>National Training Center rotation</th>
<th>600 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantry support</td>
<td>1200 hours</td>
</tr>
<tr>
<td>SOF support</td>
<td>300 hours</td>
</tr>
<tr>
<td>Division FTX</td>
<td>300 hours</td>
</tr>
</tbody>
</table>

Total support hours: 2400 hours

Subtract training hours conducted concurrently: -1900 hours

Additional hours: 500 hours

Step 10. Maintenance hours. Multiply the unit cumulative hour amount (sum of step 7 and step 8) by 5 percent to determine the estimated maintenance-hour requirements. The 5 percent figure is a general guideline and units should determine their own multiplier based on previous experience and forecasted maintenance.

<table>
<thead>
<tr>
<th>Total training hours</th>
<th>3079 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional hours</td>
<td>+500 hours</td>
</tr>
<tr>
<td>x .05</td>
<td></td>
</tr>
<tr>
<td>Maintenance hours</td>
<td>179 hours</td>
</tr>
</tbody>
</table>

Unit Flying Hour Requirement: 3778 hours

MANAGING RESOURCES

REDUCED FUNDING

9-4. Flying hours, ammunition, and repair parts allotted to a unit-training program may be removed suddenly because of budget constraints. If the FHP funding is reduced, the commander must prioritize tasks and missions in conjunction with the higher chain of command to determine which tasks or missions will be deleted.

9-5. Following any reduction in funding, commanders should never sacrifice proficiency of individuals and crews but must apply cuts to the collective task list. As an example, if a 10 percent reduction of the FHP is mandated, the commander should identify the appropriate collective tasks and discontinue training those tasks that equal 10 percent of the FHP. A battalion commander may determine that this reduction will be the discontinuance of air assault security, route reconnaissance, or area reconnaissance. All other collective tasks as well as all individual and crew training will continue to be performed at the frequency required to maintain proficiency. The tasks reduced by the commander cannot be trained or performed in
support of other units until the flying hours are reestablished. Certainly the inability to perform all required iterations of METL tasks will influence readiness. Readiness reporting must be adjusted on the USR.

TRAINING TOOLS

9-6. TADSS are training tools to offset the financial, safety, environmental, and technological constraints associated with training, as well as provide enhanced realism by synthetically applying all warfighting functions, related units, and diverse training environments. Proper use of training devices such as CBAT is crucial to the affordable maintenance of proficient aircrews. A well-structured training program will specify which tasks are to be trained on which device, the frequency of training, and a progressive linkage from one training device to another. The trainers must also consider various TADSS when planning training. The training strategy must progressively increase the intensity of training using the crawl-walk-run method. The FHP includes minimum simulator hours per aviator when simulators are available. (AR 95-1 stipulates the minimum simulator requirements.) Collective simulations will be suitable for the collective tasks that the CATS recommend during an FTX. It is imperative to develop the TSP for training with collective simulators. TSPs will save the unit planning time while allowing focused training on the METL.

CONTINUOUS ASSESSMENTS

9-7. The commander’s responsibilities do not end with the initial computation of required flying hours. Continuous assessment of the unit’s proficiency through internal and external evaluations must be conducted and flying hours adjusted as necessary to maintain the unit’s METL.
Chapter 10

Aviation Training Guidelines for Unit Status Reporting

GENERAL

10-1. The two primary Army regulations governing readiness reporting are AR 220-1 and AR 700-138. Although this guide deals primarily with training, a commander must be intimately familiar with both of these regulations. The USR gives the commander a snapshot of the unit’s overall training and equipment status. Aviation logistical readiness directly impacts the unit’s ability to conduct aviation training.

10-2. The commander determines the unit’s overall status based on an assessment of the unit’s capability to accomplish its assigned mission. The commander’s responsibilities listed in AR 220-1 include—

- Maintaining the highest unit status level possible with given resources.
- Reviewing subordinate unit reports for accuracy and compliance with applicable requirements.
- Distributing unit equipment and resources against mission essential requirements on a priority basis.
- Training to the highest level possible with the resources that are available.
- Submitting the unit’s status between regular reports, as required.
- Ensuring the unit has computer hardware/software to process and submit the USR and related Army Status of Resources and Training System reports.

10-3. A unit’s C-level indicates the degree to which the unit has achieved prescribed levels of fill for personnel and equipment, the training status of those personnel, and the maintenance status of the unit’s equipment. AR 220-1 C-level definitions are in paragraph 8-1.

10-4. Resourcing factors for commanders to consider include the availability of flying hours, training ammunition, fuel, and TADSS.

10-5. In addition to measured resources, commanders must consider other factors such as morale, discipline, availability of critical equipment, and availability of qualified key person.

ASSESSING AND REPORTING UNIT PROFICIENCY IN MISSION ESSENTIAL TASKS

10-6. A unit’s METL is derived from an analysis of the assigned wartime missions and is approved by the next higher headquarters in the unit’s reporting chain of command. The commander, at all levels, assesses the unit’s ability to execute mission essential tasks to standard. Commanders consider the unit’s ability to perform in unique operational environments as required by the unit’s METL. When assessing unit proficiency, commanders use personal observations, records, reports, and the assessments of others (internal and external to the unit).
10-7. The commander considers the demonstrated proficiency of subordinate units, leaders, Soldiers, and the availability of critical resources required to support METL training as follows:

- The unit and organic sub-elements demonstrate proficiency during external evaluations of ARTEP MTP standards, deployments at CTCs, emergency deployment readiness exercises, FTXs, CPXs, combined arms live-fire exercises, operational readiness exercises, and other training events described in the unit’s CATS. Proficiency is measured in terms of the unit’s demonstrated ability to perform the tasks as stated in the approved METL, including supporting tasks not specified in the METL but necessary for performing METL tasks. Proficiency is judged based on performing the tasks to standard. Full METL proficiency is achieved when a unit has attained a “T” level of proficiency in all METL tasks as defined in FM 7-0. Sustaining proficiency then becomes the commander’s challenge.

- Leader qualification includes not only those areas of training required by the base branch of the officer/warrant officer/NCO but may also include those areas required by professional leadership development programs that support the unit’s mission.

10-8. In addition to maintaining a minimum number of qualified individuals (minimum fill described below) to perform most of the critical warfighting tasks to standard, commanders must satisfactorily accomplish collective training events as defined in the appropriate CATS.

10-9. Commanders perform a training event execution review according to AR 220-1 to review and confirm the results of their T-level determinations in light of their units’ accomplishing critical training events.

- The events to be reviewed come directly from the training plan the unit presented at the QTB. This training plan is a direct product of the commander’s assessment of those METL tasks in which the unit must attain and sustain proficiency.

- Using unit training records, the commander compares executed training events with planned training events for the previous quarter’s QTB and the current month. When scheduled training events were not completed to standard, the commander assesses the impact on the T rating.

- Specific guidance is provided in AR 220-1 on when remarks are necessary on the USR or when commanders should downgrade T ratings because of training that was not performed.

10-10. Figure 10-1 breaks down METL task assessment requirements for each T-level.

T1	85 percent or greater of a unit’s METL tasks must have been assessed as “T” during the last 180 days.
T2	75 to 84 percent assessed as “T” during the last 180 days.
T3	65 to 74 percent assessed as “T” during the last 180 days.
T4	Less than 65 percent of the unit’s METL tasks assessed as “T” during the last 180 days.

Figure 10-1. Collective training T-level ratings

CREWMEMBER STATUS AND UNIT STATUS RELATIONSHIP

10-11. The status of aviation unit training depends on the status of individual/crew/collective training. Individual, crew, and collective proficiency must be balanced by ensuring training resources are used to train at both the individual and collective proficiency level. According to AR 220-1, units with aircraft pacing items enter the crewmember T-level on the USR. The T-level rating provides meaningful information for the entire chain of command. The unit T-level is a major factor in determining how many days the unit needs to train to standard on METL tasks. Commanders use the number of days the unit needs to train to standard on METL tasks, along with the information in AR 220-1 to determine the overall T-level. Figure 10-2 (page 10-3) explains T-level requirements.
T1 - At least 85 percent of the minimum fill-required crewmembers are RL 1 in their primary aircraft. Additionally, at least 85 percent of the minimum fill-required attack/reconnaissance crewmembers have successfully completed all required gunnery qualifications as outlined in FM 3-04.140 and the appropriate ATM within the last 180 days.

T2 - At least 75 percent of the minimum fill-required crewmembers are RL 1 in their primary aircraft. Additionally, at least 75 percent of the minimum fill-required attack/reconnaissance crewmembers have successfully completed all required gunnery qualifications as outlined in FM 3-04.140 and the appropriate ATM within the last 180 days.

T3 - At least 65 percent of the minimum fill-required crewmembers are RL 1 in their primary aircraft. Additionally, at least 65 percent of the minimum fill-required attack/reconnaissance crewmembers have successfully completed all required gunnery qualifications as outlined in FM 3-04.140 and the appropriate ATM within the last 180 days.

T4 - Does not meet minimum criteria for T3.

Figure 10-2. Crewmember training T-level ratings

10-12. All FAC 1, and those FAC 2 crewmembers selected by the commander, will be NVG/NVS proficient. The only exception to this requirement: positions designated by the commander as not having METL NVG/NVS proficiency requirements.

10-13. According to AR 220-1, the minimum manning level of fill is defined as the minimum number of Soldiers, including a minimum number of qualified individuals, required to perform most of the critical warfighting tasks to standard for that system within a continuous (24-hour) environment, while accepting some risk in sustained mission accomplishment and/or force protection. The minimum manning level is not the minimum crew for aircraft operation as stated in aircraft operator’s manuals. Minimum manning level aviation reporting criteria are included in figure 10-3.

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>PC</th>
<th>PILOT</th>
<th>CE</th>
<th>MO</th>
<th>Qualified NCM(s)</th>
<th>Minimum Fill</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH-58D</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>AH-64</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>UH-60</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>UH-60, HH-60 MED</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>OH-58 A/C</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CH-47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>LUH-72/LUH MED</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2/3</td>
</tr>
</tbody>
</table>

Figure 10-3. Minimum fill(s) requirements per aircraft

ADDITIONAL TRAINING CONSIDERATIONS

10-14. For USR reporting purposes, commanders of aviation units may only subjectively downgrade the overall unit “T” level as determined in Figure 10-2. Commanders may never subjectively upgrade their unit’s T-level.

10-15. TADSS are powerful tools to offset live training resources. Commanders are encouraged to maximize the use of TADSS.
10-16. Most aviation units equipped with attack and reconnaissance helicopters (AH-64A/D and OH58D[R]) are resourced at a C2 level of operating tempo. Under current ammunition resourcing, unit commanders have the following options:

- Gunnery qualify all assigned aircrews annually and report T1 for crewmember training for 180 days. After 180 days without additional resources, the commander would have to report T3 or, possibly, T4 until the next annual gunnery.
- Gunnery qualifies 50 percent of all assigned aircrews semiannually and report T2 for crewmember training. Maintaining a constant 50 percent gunnery-qualified aircrew base will significantly reduce the resource requirements for train up to the next RL when required.
Appendix A
Aircrew Training Records

INDIVIDUAL AIRCREW TRAINING FOLDER

A-1. The ATP records system provides commanders with a comprehensive performance record on each crewmember in their units. The required forms can be completed by hand using dark blue, black, or red ink or by utilizing DA approved computer software. The goal is to make the present recordkeeping procedures obsolete. Aircrew training records are important quality control and standardization tools. Fill out forms carefully, completely, and legibly. The examples of completed DA forms in this TC illustrate the intent of the written instructions; however, they cannot cover every possible situation. Use the Remarks section of the forms and/or the comment slips to explain situations not clearly covered by the written guideline. Commanders are responsible to ensure that only events and remarks pertinent to the ATP are annotated in the IATF. Commanders have authority to remove comments entered outside the scope of the ATPs.

A-2. Commanders must ensure that an IATF is prepared and maintained for each rated and nonrated crewmember assigned or attached to their unit. Figure A-1 and A-2 show the required layout and contents for the IATF. Use DA Form 3513 (Individual Flight Records Folder, United States Army). Prepare it by changing the words “flight records” on the front cover to “aircrew training.”

Note. ARNG facility commanders/supervisors who employ flight status FTS employees will complete a CTL for each aircraft not designated by the individual’s military commander.

Figure A-1. Individual aircrew training folder labels
Left Side of Folder
(File items in the order listed.)

1. Current training year’s DA Forms:
 • 7120-R
 • 7120-1-R
 • 7120-2-R
 • 7120-3-R

2. The previous training year’s DA Forms:
 • 7120-R
 • 7120-1-R
 • 7120-2-R
 • 7120-3-R

Right Side of Folder
(File items in the order listed.)

1. DA Form 4507-R through DA Form 4507-2-R.

2. DA Form 7122-R.

3. Miscellaneous.
 • Waivers.
 • Local required forms.

Figure A-2. Individual aircrew training folder contents

A-3. At the completion of the training year, provide the information required to flight operations for DA Form 759 closeout (FM 3-04.300).

Note. After an individual’s release from active duty, retirement, discharge, resignation, assignment (to the USAR control group), or death, process the IATF (AR 95-1).

DEPARTMENT OF THE ARMY FORM 7120-R

A-4. The CTL consists of DA Form 7120-R and all enclosures. Commanders use DA Forms 7120-R, 7120-1-R, 7120-2-R, and 7120-3-R to inform crewmembers of their ATP requirements and to designate authorized flight duties, stations, and mission or additional tasks. A separate DA Form 7120-R series is required for each primary, additional, and alternate aircraft in which the crewmember performs duties. Crewmembers performing crew duties in multiple aircraft defined as similar may use a single DA Form 7120-R series for each instance.

A-5. The DA Form 7120-R is an active document. As such, commanders may amend the DA Form 7120-R and associated enclosures throughout the crewmember’s ATP training year. An event that establishes or changes requirements on the forms will be annotated by entering the date and a brief description of that event in the first, logical remarks section of the forms. Make the associated individual change(s) as necessary throughout the DA Form 7120-R and its enclosures. The ATP commander must then place their initials next to the event to certify approval of the subsequent change(s). Some events require several individual changes to the CTL; do not initial each change, only the event entry in the Remarks section that caused the changes. Units will initiate a new DA Form 7120-R when—

- The crewmember is integrated into the unit’s ATP. Only the crewmember’s biographical data in Part 1 and authorized flight duties/stations in Part 2 are required to be filled out. The 7120-R is the commander’s authorization for the crewmember to perform flight duties in the designated stations and modes for the purposes of training. The 7120-R will be signed by the commander and crewmember.

- Initial RL 1 designation. The new 7120-R now serves as flight orders and the commander’s briefing of the crewmember’s ATP requirements to the crewmember. The 7120-R is now a contract between the commander and crewmember. The 7120-R will be dated the day the crewmember is initially designated RL 1 and signed by the commander and crewmember.
The crewmember begins a new ATP training year.

Amending the existing DA Form 7120-R is impractical. Clearly mark the amended copy on the top of the form as “Amended Copy.” Retain the unusable DA Form 7120-R with the amended 7120-R through its final disposition.

Note. A new 7120-R is not required for initial NVG RL 1 if the date is different than the initial RL 1 date. The commander will annotate the inclusion of NVG ATP requirements, brief the crewmember, and initial the changes. If a change in unit command occurs during the ATP year, the existing DA Form 7120-R and all enclosures remain in effect until the new form is initiated.

Note. The commander will initial changes on the DA Form 7120-R series when there is a change to ATP requirements. Some events require several changes to the CTL; do not initial each change, only the event remark. Additionally, the commander will ensure the crewmember has been briefed on any change to ATP requirements. Updating administrative data, rank changes, and spelling errors do not require the commander’s initials.

DEPARTMENT OF THE ARMY FORM 7120-R INSTRUCTIONS

A-6. Instructions for completing DA Form 7120-R (figure A-3, page A-6) are shown in the following paragraphs.

- Name. Enter the crewmember's name (last, first, middle initial).
- Rank. Enter the crewmember’s rank (WO1, CW2, CPT, and so forth).
- Personnel Identifier (PID). The crewmember's PID is a unique identification code used by the Centralized Aviation Flight Records System (CAFRS) known as the Electronic Data Interchange-Personal identifier (EDI-PI). Use of the crewmember's social security number (SSN) or portions of the crewmember's SSN is prohibited.

Note. In the event that CAFRS is not yet fielded in the current flight operations section the crewmember is assigned to, leave the PID block blank or use the CAFRS PID from the crewmember's previous unit.

Note. The PID generated by CAFRS is not to be confused with the PID used with the Unit Level Logistics System-Aviation (Enhanced) which incorporates the crewmembers initials and a portion of their SSN.

- Birth Month. Enter the crewmember's birth month.
- FAC. Enter the flight activity category for the position the crewmember is assigned. This block is not applicable for DACs and NCMs.
- Duty Title. Enter the crewmember's primary duty title according to MTOE or TDA (for example, company aviation safety officer).
- Aircraft. Enter the aircraft modified mission, mission type, design, and series (UH-60A or HH-60A) for which the DA Form 7120-R applies. Place an "X" in the appropriate box to show that this is the crewmember's primary, additional, or alternate aircraft. Other aircraft within a series, defined as being similar, in which a crew member is authorized and expected to perform duties will be listed on the DA Form 7120-3-R.

A-8. Part II, Authorized Flight Duties/Stations. Place an "X" in the appropriate blocks to show the authorized crewmember duties. Explain any authorization to perform observer duties in the Remarks column according to AR 600-106.

- Right/Back Seat. Place an “X” in the authorized crew duty for that position.
- Left/Front Seat. Place an “X” in the authorized crew duty for that position.
• Other Station. Place an “X” in the authorized crew duty for a station other than described above. If the duty station is other than the aircraft cabin or if further description of the cabin duty station is desired, specify that station in the remarks section of Part II.

• NVG or NVG. Mark the duties authorized using NVG or NVS.

• Remarks. Enter sufficient remarks to explain changes made to designated crew duties and or duty stations after this forms initiation.

A-9. Part III, Flying-Hour Requirements. Individual flying hour requirements are derived from the ATM and broken down into three segments: Annual (annual flying hour requirements) or First Period and Second Period (semi-annual flying hour requirements). Compute training period inclusive dates for the appropriate condition - initial designation or annual designation. See the following examples:

• Initial Designation. Initial designation is when a crewmember is first designated RL 1 or FAC 3 after integration into the unit’s ATP.

• Annual. When initially designated RL 1 or FAC 3 (or RL 2 for ARNG crewmembers), the annual training period will begin that day and end the last day of the crewmember’s birth month.

Note. Only the month and year are required for all training period end dates; the last day of the month is assumed.

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crewmember Birth Month</td>
</tr>
<tr>
<td>Designated RL 1 (RL 2 for ARNG)</td>
</tr>
<tr>
<td>Annual Training Period</td>
</tr>
</tbody>
</table>

• First Period. The first training period is normally the first 6 months of an individual’s annual training period. If initial designation occurs during the normal first period, the first training period will be from that date through the end of the first semiannual period. If the crewmember is designated RL 1 during the second training period, leave the date blocks blank in the first training period.

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crewmember Birth Month</td>
</tr>
<tr>
<td>Designated RL 1 (RL 2 for ARNG)</td>
</tr>
<tr>
<td>First Training Period</td>
</tr>
</tbody>
</table>

• Second Period. The second training period is normally the last 6 months of an individual’s annual training period. Since initial designation in this case was during the normal first period, the individual will have a complete second training period.

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crewmember Birth Month</td>
</tr>
<tr>
<td>Designated RL 1 (RL 2 for ARNG)</td>
</tr>
<tr>
<td>Second Training Period</td>
</tr>
</tbody>
</table>

• Annual Designation. Annual designation is the initiation of a new DA Form 7120-R after the crewmember’s annual closeout.

 • Annual. The first day of the month following the individual’s birth month through the end of the crewmember’s next birth month and year.

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crewmember Birth Month</td>
</tr>
<tr>
<td>Annual Closeout</td>
</tr>
<tr>
<td>Annual Training Period</td>
</tr>
</tbody>
</table>

 • First Period. The first day of the month following the individual’s birth month, through the end of the sixth month following the birth month.
Example

<table>
<thead>
<tr>
<th>Crewmember Birth Month</th>
<th>July</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Closeout</td>
<td>31 July 09</td>
</tr>
<tr>
<td>First Training Period</td>
<td>August 09 to January 10</td>
</tr>
</tbody>
</table>

- Second Period. The first day of the seventh month following the individual’s birth month, through the end of the next birth month and year.

Example

<table>
<thead>
<tr>
<th>Crewmember Birth Month</th>
<th>July</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual closeout</td>
<td>31 July 09</td>
</tr>
<tr>
<td>Second Training Period</td>
<td>February 10 to July 10</td>
</tr>
</tbody>
</table>

- Total Aircraft Hours. Determine the number of whole months remaining in the semiannual period in which designated RL 1 (or RL 2 for ARNG crewmembers). Multiply the number of whole months in the training period times one-sixth of the semiannual requirement.

H-60L-Series ATM Example

<table>
<thead>
<tr>
<th>Birth Month</th>
<th>July</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated RL 1 FAC 1</td>
<td>17 October 08</td>
</tr>
<tr>
<td>First Period</td>
<td>3 Months = 3 (1/6 x 48) = 24 hrs</td>
</tr>
<tr>
<td>Second Period</td>
<td>6 Months (48 hrs)</td>
</tr>
</tbody>
</table>

- Simulator Hours. Determine the number of whole months remaining in the training period in which designated RL 1. Multiply the number of whole months remaining in the training period times one-sixth of the semiannual requirement or one-twelfth of the annual requirement as appropriate.

H-60L-Series ATM Example

<table>
<thead>
<tr>
<th>Birth Month</th>
<th>July</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated RL 1 FAC 1</td>
<td>17 October 08</td>
</tr>
<tr>
<td>Annual Period</td>
<td>9 Months = 9 (1/12 x 18) = 13.5 hrs</td>
</tr>
</tbody>
</table>

- Condition Specific Hours. Enter the flying hours required under specific conditions as required by the ATM or Army command/local directives. The commander may specify other condition specific aircraft flying hour requirements in the bottom two blocks of Part III.

A-10. Part IV, Evaluation Requirements. In the Designated Period column, enter the designated 3-month period in which the crewmember must complete each applicable evaluation listed. Use the Remarks/Date Completed column to annotate changes to evaluation requirements during the ATP training year and to record the date each evaluation is completed.

A-11. Part V, Enclosures. DA Forms 7120-1-R, 7120-2-R, and 7120-3-R will be enclosure 1, 2, and 3, respectively. Commanders may add additional enclosures to this block but must specify the form number or title of the enclosure.

A-12. Part VI, Certification. Enter the commander's first name, middle initial, last name, rank, and branch. The commander will sign and date the form authorizing the crewmember to perform flight duties at the indicated crew stations prior to the crewmember's first flight. Authorized duty/station difference for similar aircraft will be specified on the DA Form 7120-3-R. If the crewmember is a company commander (ATP commander), the battalion commander, will sign the certification block. When the crewmember is a battalion or brigade commander, the ATP commander will sign the certification block. The crewmember will sign and date the CTL to certify he has been briefed on and understands the ATP requirements prior to the first flight. Upon initial RL 1 designation, the crewmember will be briefed on task iteration, flying hour minimums, evaluation requirements and all other requirements incurred by this designation. For annual designation forms, the commander and crewmember will sign and date the CTL no later than the first day of the month following the crewmember’s birth month.
COMMANDER'S TASK LIST

For use of this form see TC 3-04.11; the proponent agency is TRADOC.

PART I. BIOGRAPHICAL

<table>
<thead>
<tr>
<th>Name:</th>
<th>Smith, John J.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank:</td>
<td>CPT</td>
</tr>
<tr>
<td>PID: (CAFRS ID):</td>
<td></td>
</tr>
<tr>
<td>Birth Month:</td>
<td>JUL</td>
</tr>
<tr>
<td>FAC:</td>
<td>1</td>
</tr>
<tr>
<td>Duty Title:</td>
<td>Instructor Pilot</td>
</tr>
<tr>
<td>Aircraft Type:</td>
<td>UH-60L</td>
</tr>
</tbody>
</table>

PART II. AUTHORIZED FLIGHT DUTIES/STATIONS

<table>
<thead>
<tr>
<th>PI</th>
<th>PC</th>
<th>UT</th>
<th>IP</th>
<th>SP</th>
<th>IE</th>
<th>MP</th>
<th>FCP</th>
<th>ME</th>
<th>XP</th>
<th>CE</th>
<th>FE</th>
<th>FI</th>
<th>SI</th>
<th>AO</th>
<th>MO</th>
<th>OR</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>1P Added 19 Nov 09</td>
</tr>
</tbody>
</table>

PART III. FLYING-HOUR REQUIREMENTS

<table>
<thead>
<tr>
<th>Annual</th>
<th>First Period</th>
<th>Second Period</th>
<th>Remarks/Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dates:</td>
<td>17 Oct 08-Jul 09</td>
<td>17 Oct 09-Jan 09</td>
<td>Feb 09-Jul 09</td>
</tr>
<tr>
<td>Total Aircraft Hours</td>
<td>24</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Total Simulator Hours</td>
<td>13.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night Unaided Hours</td>
<td>0.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NVG Hours</td>
<td>4.5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Hood/Weather Hours</td>
<td>1.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Other Hours (Specify)</td>
<td>3</td>
<td></td>
<td>Maintain Added 6 Jan 09 59</td>
</tr>
</tbody>
</table>

PART IV. EVALUATION REQUIREMENTS

<table>
<thead>
<tr>
<th>Designated Period (AC/USAR) or Qtr (ARNG)</th>
<th>Remarks/Date Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardization Flight Evaluation</td>
<td>May 09-Jul 09 23 May 09</td>
</tr>
<tr>
<td>Instrument Flight Evaluation</td>
<td>May 09-Jul 09 15 Jan 09</td>
</tr>
<tr>
<td>Operator's Manual Written Examination</td>
<td>May 09-Jul 09 11 Jul 09</td>
</tr>
<tr>
<td>NVG Flight Evaluation</td>
<td>May 09-Jul 09 23 May 09</td>
</tr>
<tr>
<td>Maintenance Test Flight Evaluation</td>
<td></td>
</tr>
<tr>
<td>Other (Specify): CBRN</td>
<td>May 09-Jul 09 2 May 09</td>
</tr>
<tr>
<td>Other (Specify):</td>
<td></td>
</tr>
</tbody>
</table>

PART V. ENCLOSURES

1. DA Form 7120-1-R (Crew Member Task Performance and Evaluation Requirements) ✗ Yes □ No
2. DA Form 7120-2-R (Crew Member Task Performance and Evaluation Requirements Continuation Sheet)
3. DA Form 7120-3-R (Crew Member Task Performance and Evaluation Requirements Remarks and Certification)
4. Other (Specify)
5. Other (Specify)

PART VI. CERTIFICATION

This form, its enclosure(s), and the aircrew training manual establish your Aircrew Training Program requirements.

Commander:

Signature:

Date: 17 Oct 08

I certify that I have read and understand my ATP requirements contained on this form, its enclosure(s), and the aircrew training manual.

Crew Member's Signature:

Date: 17 Oct 08

Figure A-3. Example of completed DA Form 7120-R
DEPARTMENT OF THE ARMY FORM 7120-1-R

A-13. DA Form 7120-1-R (figure A-4, page A-8) details the base, mission, and additional task performance and evaluation requirements for each crewmember.

- **Name.** Enter the crewmember's name (last, first, middle initial).
- **Aircraft.** Enter the aircraft as stated on the crewmember’s DA Form 7120-R.
- **CBRN Required.** Mark appropriately based on the commander’s (O-6 or above) determination of the unit’s CBRN requirements.
- **Tasks.**
 - Base task iteration and evaluation requirements are as established in the appropriate ATM (as are maintenance tasks for crewmembers designated as MP, ME, or FCP on the DA Form 7120-R) unless otherwise noted. To mandate evaluation or to increase iterations of specific base or maintenance tasks, enter the task number followed by the task title on the blank lines provided. Remaining base/maintenance tasks will be as established in the appropriate ATM.
 - Enter the mission or additional task number followed by the task title on the blank lines provided, if applicable.
 - Enter unit-specific requirements such as tactical scenarios or STXs after the last task. If more space is needed, use DA Form 7120-2-R.
 - If CBRN training is required, task iteration and evaluation requirements are as established in the appropriate ATM. The ATP commander may add tasks, iteration and evaluation requirements to the minimums outlined in the appropriate ATM by following the instructions above for base tasks.
 - Performance of instrument base tasks as specified in the appropriate ATM for Additional Aircraft is assumed for the purpose of this form. For crewmembers that have RW as a primary and additional aircraft, the commander will determine the instrument task iteration requirements. If not required by the commander, enter a statement to that effect in the Remarks section of the DA Form 7120-3-R.

Note. Task titles may be abbreviated to fit within the space provided.

Note. For FAC 3 aviators: List commander designated base task requirements on the DA Form 7120-1-R.

- **Day, Night, NVG, NVS, CBRN, Simulation, and Technical.**
 - For each task listed, enter the number of times the crewmember must perform the task in the appropriate flight mode/condition column.
 - Tasks listed that are specified as technical tasks by the appropriate ATM are not specific to any mode or condition. Technical tasks iteration and evaluation requirements will be listed under the “Tech” column. Commanders will not assign modes to technical tasks.
 - Place an "E" next to the number (for example, 3E) in the appropriate column if the task is mandatory for annual evaluations. The commander may elect to delegate the authority to the evaluator to select specific tasks for evaluation. This authority must be annotated in the Remarks section of DA Form 7120-3-R.

Note. If the crewmember's task performance or evaluation requirements change during the ATP training year, enter the change on DA Form 7120-1-R and explain it in the Remarks column. If more space is needed, use the Remarks section on DA Form 7120-3-R.

- **Remarks.** Use as required to fully explain changes, remarks, and or adjustments.
CREW MEMBER TASK PERFORMANCE AND EVALUATION REQUIREMENTS

For use of this form, see TC 3-04.11 the proponent agency is TRADOC

<table>
<thead>
<tr>
<th>Name: Smith, John H.</th>
<th>Aircraft: UH-60L</th>
<th>CBRN Requirements:</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasks</td>
<td>Day</td>
<td>Night</td>
<td>NVG</td>
<td>NVS</td>
</tr>
<tr>
<td>2010 Perform multiaircraft ops</td>
<td>2</td>
<td>1</td>
<td>2E</td>
<td></td>
</tr>
<tr>
<td>2012 Perform tactical flt msn plan</td>
<td>2</td>
<td></td>
<td></td>
<td>2E</td>
</tr>
<tr>
<td>2014 Perform ECM/ECCM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022 Transmit tactical reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024 Perform terrain flight nav</td>
<td>2</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2026 Perform terrain flight</td>
<td>2</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2034 Perform masking/unmasking</td>
<td>2</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2036 Perform terrain flt decel</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2042 Perform actions on contact</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2048 Perform sling load operations</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2052 Perform water bucket ops</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2058 Perform SPIES operations</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2065 Operate personnel locator sys</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2066 Perform ERFS operations</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2075 Perform Fat Hawk operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2081 Operate NVG</td>
<td></td>
<td></td>
<td>3E</td>
<td></td>
</tr>
<tr>
<td>2086 operate ANNVIS HUD</td>
<td></td>
<td></td>
<td>3E</td>
<td></td>
</tr>
<tr>
<td>2090 Perform LZ recon for MGW</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2092 Respond to NVG failure</td>
<td></td>
<td></td>
<td></td>
<td>1E</td>
</tr>
<tr>
<td>2093 Perform sim MGW app/Indg</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2095 Perform sim MGW takeoff</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2127 Perform combat maneuver flt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2169 Perform aerial observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UH-60M Tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025 Operate IVHMS</td>
<td></td>
<td></td>
<td>3E</td>
<td></td>
</tr>
<tr>
<td>1142 Perform digital comms</td>
<td></td>
<td></td>
<td>3E</td>
<td></td>
</tr>
<tr>
<td>1167 Perform flt man w/athy flt inst</td>
<td>1</td>
<td>1</td>
<td>2E</td>
<td></td>
</tr>
<tr>
<td>1169 Perform FD operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1253 Operate FMS</td>
<td></td>
<td></td>
<td>3E</td>
<td></td>
</tr>
<tr>
<td>1254 Operate MFD</td>
<td></td>
<td></td>
<td>3E</td>
<td></td>
</tr>
</tbody>
</table>

DA FORM 7120-1-R, DEC 2009

PREVIOUS EDITIONS ARE OBSOLETE.

APD PE v1.00

Figure A-4. Example of completed DA Form 7120-1-R
DEPARTMENT OF THE ARMY FORM 7120-2-R

A-14. Use DA Form 7120-2-R (figure A-5) as necessary to list tasks or unit requirements when there is insufficient room on DA Form 7120-1-R.

- Name. Enter the crewmember's name (last, first, middle initial).
- Aircraft. Enter the aircraft as stated on the crewmember’s DA Form 7120-R.
- Page. Enter the DA Form 7120-2-R page number and total number of DA Form 7120-2-Rs.

Figure A-5. Example of completed DA Form 7120-2-R
DEPARTMENT OF THE ARMY FORM 7120-3-R

A-15. DA Form 7120-3-R (figure A-6, page A-11) is normally the last page of the CTL. It is used to document all additional/other training requirements prescribed by the commander as part of the crewmember’s ATP.

- **Name.** Enter the crewmember's name (last, first, middle initial).
- **Aircraft.** Enter the aircraft as stated on the crewmember’s DA Form 7120-R.
- **Date.** For Annual designation forms, this date will be no later than the first day of the month following a crewmember’s birth month. For Initial designation forms, this date will be the date that the crewmember is designated RL 1 or FAC 3.
- **Remarks.** Add the title of any periodic training task, recurring training and additional/other commander-designated training required as part of the ATP but not listed on any other forms within the DA Form 7120-R-series. If applicable, list similar aircraft, authorized flight duties, and stations authorized by the commander. Flight duties and stations will be listed if different than stated on the DA Form 7120-R.
- **Certification.** No later than the last day of a crewmember’s birth month, closeout the DA Form 7120-R series by having the crewmember sign and date the DA Form 7120-3-R CERTIFICATION block. The crewmember circles the “have” portion of the statement if all ATP requirements have been met by that date. If all ATP requirements have not been met, the crewmember circles the “have not” portion of the statement. Paragraphs 4-39 and 4-40 of this TC list the ATP requirements of RCMs and NCMs for different FAC and RLs. Crewmembers who circle the “have not” portion of the statement must be processed according to AR 95-1, if applicable, and an appropriate comment will be entered in the Remarks section explaining why the requirements were not met and when they will be completed.

Example: If a waiver or extension of a specified requirement is granted and all remaining ATP requirements have been met, the crewmember will circle the “have not” portion of the Certification block.

Example: If a crewmember is reassigned (PCS) before the end of their APART period or was unable to complete APART requirements due to a temporary medical suspension, circle the “have not” portion of the Certification block and provide a brief statement explaining the event in the DA Form 7120-3-R remarks area.
Figure A-6. Example of completed DA Form 7120-3-R

CREW MEMBER TASK PERFORMANCE AND EVALUATION REQUIREMENTS

REMARKS:

- ACT-E Refresher Training aligned with APART period.
 - COMPLETED: 23 Jun 09
- Annual CBAT Training to be completed IAW unit SOP.
 - 17 Jul 09
- Annual ROC-V Training to be completed IAW unit SOP.
 - 12 Feb 09
- Academic Training to be completed IAW unit SOP.
 - 07 Apr 09
- Aeromedical Training to be completed IAW unit SOP.
 - 07 Apr 09

Crew member is authorized to perform duties listed in Part II of DA Form 7120-R in the UH-60M and will complete the 4 specific tasks (1025, 1167, 1169, and 1260) and ATM tasks (1253 and 1254) during the APART period.

Enter any pertinent remarks or additional ATP requirements not listed elsewhere in the 7120 series on this sheet.

Crew member is required to perform one hour of the three-hour semiannual mountain hour requirement using NVG.

The evaluator will select a minimum of three mission tasks marked with an "E" for evaluation during the crew member's APART/annual NVG evaluations.

CERTIFICATION:

I have not completed my ATP flying-hour, task performance, and evaluation requirements.

Crew Member's Signature: [Signature]
Date: 28 Jul 09

DA FORM 7120-3-R, DEC 2009
A-16. DA Form 7122-R (figures A-7 and A-11, pages A-15 and A-19) is used to permanently record crewmember evaluations and summaries of DA Form 4507-R. This form is also used to collect data during the year for input on the DA Form 759.

A-17. General instructions.

- Type or clearly print all entries in black, dark blue, or red ink.
- For blocks that do not require an entry, enter NA for Not Applicable or a dash (—).
- To make minor corrections, use correction fluid/tape or neatly line through the incorrect information and add the correct information. Use the procedures in paragraph A-20 to make major corrections.
- Keep entries as clear and concise as possible. Use standard abbreviations and acronyms.
- Significant aviation related events that occur (aircraft qualification or IFE course) during the time a crewmember departs the previous duty station and is integrated into a new ATP will be entered on the 7122-R prior to the assignment entry.
- Not every possible event or occurrence can be anticipated. If situations arise that are not covered by these instructions, use sound judgment and enter the event in the most logical manner.
- DA Form 7122-R is a two-page form; however, it is likely that one page will fill before the other. When one page of the form is filled, close out the other page of the form by drawing a diagonal line from the first unused block to the last unused block.

A-18. Administrative and demographic data.

- Sheet number. Number each sheet in numerical order.
- Name. Enter the crewmember's full name (last, first, and middle initial). If reproducing the form on two separate sheets of paper, enter the crewmember’s name on the first line of the second sheet, in the Remarks area, followed by the sheet number with which it corresponds.
- PID. Enter the individual’s CAFRS ID as discussed in paragraph A-7.
- Rank. Enter the crewmember's rank.
- Birth month. Enter the crewmember's birth month.

A-19. Training event data.

- Date. Enter the day, month, and year of the event. After the first entry, it is acceptable to omit the year until entry of the first event of the following year. If an entry is out of chronological order, the date will be in red and the year must be included.
- Aircraft. Enter the alphanumeric designation of the aircraft or simulator (UH-60L or OH-58C). If the event was performed solely in a flight simulator, enter the simulator designation (2B24 or 2B60).
- Event. Enter a short summary of the event on one line. Record events listed below:
 - Unit assignments and reassignments. Reassignment within the unit not requiring a DA 759 closeout will be treated as a change of duty.
 - Start and completion of time-limited training programs such as each level of RL or PC progressions. Start times may be implied by previous entry. Example: The date that a crewmember is qualified RL 2 starts the clock for Mission Training and sets the suspense for RL 1 designation.
 - Proration of flying-hour minimums at the end of the training period (see paragraph 4-21). Include justification and number of months prorated in entry remarks.
 - Placement on or removal from flight status.
 - Change of duty position, FAC, primary, alternate, or additional aircraft.
 - Completion of DOA aviation-related qualification courses, both flying and nonflying.
 - All flight, oral, and written evaluations. Specify the type of evaluation; for example, no-notice evaluation, APART instrument evaluation, or proficiency flight evaluation.
- Completion of all ATP requirements for each primary, additional and alternate aircraft as applicable.
- Any nonmedical suspensions and their disposition.

Note. IAW AR 600-105, an ATP commander may impose a nonmedical suspension of up to 30 days. Commanders with FEB convening authority/general court martial authority may impose a nonmedical suspension of up to 180 days.

- All waivers or extensions of ATP requirements granted. Entries will specify the affected requirements and when applicable, the date the requirements must be completed. If required, crewmembers will be suspended from flight duties until completion of the commander’s investigation and the extension or waiver is granted.
- Completion of extension or waiver requirements.
- Change in unit aircraft availability/nonavailability status due to movement to deployment/redeployment or aircraft preset/reset. This entry is not required if aircraft nonavailability does not result in the crewmember being granted a waiver, extension, or flying-hour proration.
- Designation or removal of alternate or additional aircraft. Also, the addition or removal of similar aircraft to the listing on Primary, Additional or Alternate aircraft DA Form 7120-R series forms.
- Involvement in any Class A, B, or C, accident or incident and the results of any postaccident evaluation (if given).
- Completion of significant training where DA Form 7122-R documentation is specifically directed in the program; for example, “Deck Landing Qualification complete.” Include the source of the training program requirements in the event remarks; for example, “Deck landing qualification completed IAW Army/Navy MOU.”
- Record the following additional events on the 7122-R. Completion of LAO (include times for Day, Night, and NVD flights.). Completion of required gunnery tables. Completion of ACT-E requirements. Completion of environmental training. Receipt of a “Broken Wing” award or flying-hour award for safety.
- Do not record the following events. Flights conducted solely to accomplish task iteration, flying-hour, or MOPP requirements. Attendance at recurring briefings (for example, safety meetings and weather briefings). Participation in ARTEP exercises or other unit-level exercises.
 - Duty. If applicable, enter the appropriate duty symbol. This duty symbol reflects the purpose of the flight or event, not necessarily the DA Form 2408-12 (Army Aviator's Flight Record) duty. For example, a PC flight evaluation requires entry of the duty symbol “PI” on DA Form 2408-12 but on the DA Form 7122-R, the duty symbol entered would be “PC.”
 - The entries on the DA Form 7120-R, Part II, DA Form 7120-3-R (if applicable), and DA Form 7122-R with the commander’s signature/initials and date and on the DA Form 7122-R with the commander’s signature will suffice for orders authorizing duty positions.
 - Day (D), Night (N), Night Goggle(s) (NG), Night System (NS), Weather (W), Hood (H), and Sim. Enter the time flown, in hours and tenths of hours, under the appropriate flight modes/conditions. Enter the time flown on any single flight event or the total hours flown in multiflight training programs. The flight modes/conditions indicated normally will agree with the DA Form 2408-12 entry.
 - Seat. Enter the crewmember’s seat position, if appropriate, for the event (front, back, left, right, both, or cabin).
 - Recorded By. Evaluators, trainers, operations personnel and others when authorized by the commander will enter their first initial, last name, rank and duty position. If the event was an evaluation and someone is recording it other than the evaluator, record the evaluator’s name in the remarks section.
Appendix A

- Grade (GR). If the event was graded, enter an "S" (satisfactory) or a “U” (unsatisfactory). For an unsatisfactory evaluation, state the specific tasks the crewmember performed unsatisfactorily and any restrictions imposed due to the failure. Provide a recommendation to the commander for retraining and reevaluation.

- Crewmember initials (CM Int). Brief the crewmember on the entry and ensure that the crewmember understands any change in status. Crewmembers will then initial this block. A crewmember’s initials show that the crewmember is aware of the entry on the form and any remarks and understands any change in status. The crewmember will immediately initial any entry resulting in a change of status such as an unsatisfactory evaluation or a suspension. The crewmember will initial routine entries such as assignment to a unit or satisfactory evaluations, as soon as practical.

- Remark (Rmk). Enter “Yes,” “Y,” “No,” or “N” in this column to show whether comments are entered in the Remarks section regarding the entry. Do not enter “NA” in this column or leave it blank.

- Remarks. Record pertinent information not shown on the front of the form in this section. Do not restate information entered on the front of the form; for example, “This was a satisfactory PC evaluation.” There is no single correct way of entering remarks. However, they should be clear, concise, and specific. When entering remarks, use standard abbreviations and acronyms or logical shortened word.

- Enter the date in the same format as the front of the form. After the date, enter pertinent remarks. If the remarks require more than one line, do not repeat the date on the second or subsequent line(s). Remarks include description of unsatisfactory tasks on an evaluation or an explanation of nonmedical suspensions from flight.

The following events recorded on the DA Form 7122-R require the commander's signature:
- Nonmedical suspension.
- RL designation after failure of a hands-on performance test or a training deficiency.
- Extensions or waivers.
- Return to previous duties after nonmedical suspension or RL designation after failure of a hands-on performance test or a training deficiency.

Note. The commander, pertaining to the individual aircrew training flight records, is defined as the commander responsible for the ATP. Waiver and extension authority is IAW AR 95-1, local regulations, and SOPs. The appropriate commander will sign the DA Form 7122-R, page 2, when required. Memoranda for record granting extensions or waivers signed by the commander will be retained in the miscellaneous section of the IATF until the end of the ATP year when the waiver or extension is annotated on the DA Form 759 closeout.

A-20. Corrections to DA Form 7122-R may be needed for several reasons. Careful and timely entering of events as they occur will eliminate the need for corrections.

- Out of sequence events. If an event is not entered at the proper time and one or more events have been recorded, enter the event as you would any other event on the next available point, except, use red ink when entering the date (to include year) of the out-of-sequence event.

- Unusable form. If enough mistakes accrue to make the form unusable, transcribe the data to a new form. Place a diagonal line across the front of the unusable form, label it “transcribed,” and retain this copy of the form (permanently) under the current form. DO NOT DESTROY OR DISCARD ANY DA FORM 7122-R THAT CONTAINS AN ENTRY.
Figure A-7. Example of completed DA Form 7122-R
Figure A-8. Example of completed DA Form 7122-R, Page 2
Example 1: Accident Involvement with Postaccident Evaluation

CREW MEMBER TRAINING RECORD

For the use of this form see TC 3-04.11; the proponent agency is TRADOC.

<table>
<thead>
<tr>
<th>Date</th>
<th>A/C</th>
<th>Event</th>
<th>Duty</th>
<th>D</th>
<th>N</th>
<th>NG</th>
<th>NS</th>
<th>W</th>
<th>H</th>
<th>Sim</th>
<th>Seat</th>
<th>Recorded By</th>
<th>GR</th>
<th>CM Init</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Apr 08</td>
<td>UH-60A</td>
<td>Class B accident</td>
<td>PI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>L</td>
<td>R</td>
<td>Smith, CW4, SP&E</td>
<td>JB</td>
</tr>
<tr>
<td>21 Apr 08</td>
<td>UH-60A</td>
<td>Post accident evaluation</td>
<td>PI</td>
<td>-</td>
<td>0.3</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>L</td>
<td>R</td>
<td>Smith, CW4, SP&E</td>
<td>S</td>
</tr>
</tbody>
</table>

Remarks

14 Apr 08: Pilot involved in hard NVG landing, not on controls.
21 Apr 08: Good flight, recommend return to full flight duty.

Approved

Commander's Signature

Example 2: Accident Involvement with Postaccident Evaluation

CREW MEMBER TRAINING RECORD

For the use of this form see TC 3-04.11; the proponent agency is TRADOC.

<table>
<thead>
<tr>
<th>Date</th>
<th>A/C</th>
<th>Event</th>
<th>Duty</th>
<th>D</th>
<th>N</th>
<th>NG</th>
<th>NS</th>
<th>W</th>
<th>H</th>
<th>Sim</th>
<th>Seat</th>
<th>Recorded By</th>
<th>GR</th>
<th>CM Init</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Apr 08</td>
<td>UH-60A</td>
<td>Class B accident</td>
<td>PI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>L</td>
<td>R</td>
<td>Smith, CW4, SP&E</td>
<td>JB</td>
</tr>
<tr>
<td>21 Apr 08</td>
<td>UH-60A</td>
<td>Post accident evaluation</td>
<td>PI</td>
<td>-</td>
<td>0.3</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>L</td>
<td>J</td>
<td>White, CW3, SP&E</td>
<td>U</td>
</tr>
<tr>
<td>28 Apr 08</td>
<td>UH-60A</td>
<td>Post accident retraining</td>
<td>PI</td>
<td>-</td>
<td>0.9</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>L/R</td>
<td>R</td>
<td>Smith, CW4, SP&E</td>
<td>S</td>
</tr>
</tbody>
</table>

Remarks

14 Apr 08: Pilot involved in hard NVG landing, not on controls.
21 Apr 08: Tech proficient but very apprehensive. Recommend 2-3 hours w/SP to become more comfortable in NVG environment.
28 Apr 08: Good flight. Comfortable and proficient in NVG environment. Recommend return to full flight duty.

Approved

Commander’s Signature

Example 3: Request for Extension (APART Requirements)

CREW MEMBER TRAINING RECORD

For the use of this form see TC 3-04.11; the proponent agency is TRADOC.

<table>
<thead>
<tr>
<th>Date</th>
<th>A/C</th>
<th>Event</th>
<th>Duty</th>
<th>D</th>
<th>N</th>
<th>NG</th>
<th>NS</th>
<th>W</th>
<th>H</th>
<th>Sim</th>
<th>Seat</th>
<th>Recorded By</th>
<th>GR</th>
<th>CM Init</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Oct 08</td>
<td>OH-58D</td>
<td>Request for extension</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>M</td>
<td>White, CW3, SP&E</td>
<td>JB</td>
</tr>
<tr>
<td>11 Oct 08</td>
<td>OH-58D</td>
<td>NVG-Stands evaluation</td>
<td>PI</td>
<td>1.4</td>
<td>0.2</td>
<td>2.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>L/R</td>
<td>M</td>
<td>White, CW3, SP&E</td>
<td>S</td>
</tr>
<tr>
<td>11 Oct 08</td>
<td>OH-58D</td>
<td>2008 APART complete</td>
<td>PI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>M</td>
<td>White, CW3, SP&E</td>
<td>-</td>
</tr>
</tbody>
</table>

Remarks

01 Oct 08: Request 30-day extension for completion of APART flight eval due to medical suspension and TDY during eval. All ATTP requirements have been met.

Approved

Commander’s Signature

Example 4: Request for Individual Waiver (Semi-Annual Flight Hours)

CREW MEMBER TRAINING RECORD

For the use of this form see TC 3-04.11; the proponent agency is TRADOC.

<table>
<thead>
<tr>
<th>Date</th>
<th>A/C</th>
<th>Event</th>
<th>Duty</th>
<th>D</th>
<th>N</th>
<th>NG</th>
<th>NS</th>
<th>W</th>
<th>H</th>
<th>Sim</th>
<th>Seat</th>
<th>Recorded By</th>
<th>GR</th>
<th>CM Init</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Apr 08</td>
<td>UH-60A</td>
<td>Request for waiver</td>
<td>PI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>Smith, CW4, SP&E</td>
<td>JB</td>
</tr>
</tbody>
</table>

Remarks

14 Apr 08: Waiver request for annual flight hour requirements due to duties requiring constant attention during the period 13 Nov 07 to 10 Apr 08. Waiver granted by BDE CDR. waived memo dated 14 Apr 08.

Approved

Commander’s Signature

Figure A-9. Examples 1 through 4 of DA Form 7122-R
Example 5: Change of Duty

CREW MEMBER TRAINING RECORD

<table>
<thead>
<tr>
<th>Date</th>
<th>A/C</th>
<th>Event</th>
<th>Duty</th>
<th>D</th>
<th>N</th>
<th>NS</th>
<th>W</th>
<th>H</th>
<th>Sim</th>
<th>Seat</th>
<th>Recorded By</th>
<th>GR</th>
<th>CM Init</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Apr 08</td>
<td>UH-60A</td>
<td>Change of duty</td>
<td>PI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R. Smith, CW4, SP1E</td>
<td>JB</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- Commander’s Signature

Example 6: Environmental Training and Similar Training Programs

CREW MEMBER TRAINING RECORD

<table>
<thead>
<tr>
<th>Date</th>
<th>A/C</th>
<th>Event</th>
<th>Duty</th>
<th>D</th>
<th>N</th>
<th>NS</th>
<th>W</th>
<th>H</th>
<th>Sim</th>
<th>Seat</th>
<th>Recorded By</th>
<th>GR</th>
<th>CM Init</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Apr 08</td>
<td>CH-47D</td>
<td>Environmental training</td>
<td>PI</td>
<td>6.2</td>
<td>1.0</td>
<td>8.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>L/R. Bradley, CW4, SP</td>
<td>S</td>
<td>JB</td>
<td>Yes</td>
</tr>
<tr>
<td>05 May 08</td>
<td>CH-47D</td>
<td>Day SPRS qualification</td>
<td>PI</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R. Bradley, CW4, SP</td>
<td>S</td>
<td>JB</td>
<td>No</td>
</tr>
</tbody>
</table>

Remarks

- Commander’s Signature

Example 7: Designate Additional Aircraft

CREW MEMBER TRAINING RECORD

<table>
<thead>
<tr>
<th>Date</th>
<th>A/C</th>
<th>Event</th>
<th>Duty</th>
<th>D</th>
<th>N</th>
<th>NS</th>
<th>W</th>
<th>H</th>
<th>Sim</th>
<th>Seat</th>
<th>Recorded By</th>
<th>GR</th>
<th>CM Init</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Apr 08</td>
<td>AH-64A</td>
<td>Assign additional A/C</td>
<td>PI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R. Smith, CW4, SP1E</td>
<td>JB</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>05 Jun 08</td>
<td>AH-64A</td>
<td>RL2 D/N</td>
<td>PI</td>
<td>9.4</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
<td>2.1</td>
<td>6.5</td>
<td>Both</td>
<td>T. White, CW3, IP1E</td>
<td>S</td>
<td>JB</td>
<td>No</td>
</tr>
<tr>
<td>30 Jul 08</td>
<td>AH-64A</td>
<td>RL1 D/N PC D/N</td>
<td>PC</td>
<td>4.1</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>4.0</td>
<td>-</td>
<td>Both</td>
<td>T. White, CW3, IP1E</td>
<td>S</td>
<td>JB</td>
<td>No</td>
</tr>
</tbody>
</table>

Remarks

- Commander’s Signature

Example 8: Initial A/C Qualification (NCM)

CREW MEMBER TRAINING RECORD

<table>
<thead>
<tr>
<th>Date</th>
<th>A/C</th>
<th>Event</th>
<th>Duty</th>
<th>D</th>
<th>N</th>
<th>NS</th>
<th>W</th>
<th>H</th>
<th>Sim</th>
<th>Seat</th>
<th>Recorded By</th>
<th>GR</th>
<th>CM Init</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Apr 08</td>
<td>CH-47D</td>
<td>Started A/C qualification</td>
<td>CE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>G. Sung, SSG, SI</td>
<td>JB</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>02 May 08</td>
<td>CH-47D</td>
<td>Academics completed</td>
<td>CE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>G. Sung, SSG, SI</td>
<td>S</td>
<td>JB</td>
<td>No</td>
</tr>
<tr>
<td>25 May 08</td>
<td>CH-47D</td>
<td>A/C qualification completed</td>
<td>CE</td>
<td>15.0</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>B. Clark, SGT, PI</td>
<td>S</td>
<td>JB</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Remarks

- Commander’s Signature

Figure A-10. Examples 5 through 8 of DA Form 7122-R
Example 9: Initial NVG Qualification (NCM)

CREW MEMBER TRAINING RECORD

For the use of this form see TC 3-04.11; the proponent agency is TRADOC.

Sheet No. 1

<table>
<thead>
<tr>
<th>Name: Brown, James D.</th>
<th>P: (CAF R5 ID)</th>
<th>Rank: CW2</th>
<th>Birth Month: September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>AC</td>
<td>Event</td>
<td>Duty</td>
</tr>
<tr>
<td>14 Apr 08</td>
<td>CH-47D</td>
<td>Started NVG qualification</td>
<td>CE</td>
</tr>
<tr>
<td>02 May 08</td>
<td>CH-47D</td>
<td>NVG academics complete</td>
<td>CE</td>
</tr>
<tr>
<td>15 May 08</td>
<td>CH-47D</td>
<td>NVG qualification complete</td>
<td>CE</td>
</tr>
</tbody>
</table>

Remarks
15 May 08 | Qualified RL2 NVG

Example 10: Initial ACT-E Qualification (NCM)

CREW MEMBER TRAINING RECORD

For the use of this form see TC 3-04.11; the proponent agency is TRADOC.

Sheet No. 1

<table>
<thead>
<tr>
<th>Name: Brown, James D.</th>
<th>P: (CAF R5 ID)</th>
<th>Rank: CW2</th>
<th>Birth Month: September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>AC</td>
<td>Event</td>
<td>Duty</td>
</tr>
<tr>
<td>14 Apr 08</td>
<td>CH-47D</td>
<td>Started ACT-E qualification</td>
<td>CE</td>
</tr>
<tr>
<td>03 May 08</td>
<td>CH-47D</td>
<td>ACT-E academics complete</td>
<td>CE</td>
</tr>
<tr>
<td>15 May 08</td>
<td>CH-47D</td>
<td>ACT-E qualification complete</td>
<td>CE</td>
</tr>
</tbody>
</table>

Remarks

Example 11: Nonmedical Suspension

CREW MEMBER TRAINING RECORD

For the use of this form see TC 3-04.11; the proponent agency is TRADOC.

Sheet No. 1

<table>
<thead>
<tr>
<th>Name: Brown, James D.</th>
<th>P: (CAF R5 ID)</th>
<th>Rank: CW2</th>
<th>Birth Month: September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>AC</td>
<td>Event</td>
<td>Duty</td>
</tr>
<tr>
<td>14 Apr 08</td>
<td>UH-60A</td>
<td>Nonmed suspension</td>
<td>PI</td>
</tr>
<tr>
<td>27 Apr 08</td>
<td>UH-60A</td>
<td>Investigation complete</td>
<td>PI</td>
</tr>
</tbody>
</table>

Remarks
14 Apr 08 | Suspended from all flight duties pending investigation of FAA violation, 15 Mar 08.
27 Apr 08 | Investigation of Mar 08 complete. Recommend that F.E.B. be convened.

Example 12: Safety & Broken Wing Awards

CREW MEMBER TRAINING RECORD

For the use of this form see TC 3-04.11; the proponent agency is TRADOC.

Sheet No. 1

<table>
<thead>
<tr>
<th>Name: Brown, James D.</th>
<th>P: (CAF R5 ID)</th>
<th>Rank: CW2</th>
<th>Birth Month: September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>AC</td>
<td>Event</td>
<td>Duty</td>
</tr>
<tr>
<td>14 Apr 08</td>
<td>AH-64D</td>
<td>Broken Wing award</td>
<td>PC</td>
</tr>
<tr>
<td>25 Jun 08</td>
<td>AH-64D</td>
<td>Safety award</td>
<td>PC</td>
</tr>
</tbody>
</table>

Remarks
14 Apr 08 | Received award for actions after engine failure on 6 Jan 08.
25 Jun 08 | Received award for 1,000 hours accident/incident free.

Figure A-11. Examples 9 through 12 of DA Form 7122-R
DEPARTMENT OF THE ARMY FORM 4507-R

A-21. The DA Form 4507-R series forms will be filed on the right side of the IATF until completion of the training and the event has been documented on the DA Form 7122-R. Once the event has been entered on the DA Form 7122-R, the DA Form 4507-R series will be removed from the IATF. See figure A-12, page A-21, for a sample DA Form 4507-R. Instructions for completing the form are as follows:

- **Name and Rank.** Enter the crewmember's name (last, first, middle initial) and rank.
- **PID.** Enter the individual’s CAFRS ID as discussed in paragraph A-7.
- **Unit.** Enter the unit to which the crewmember is assigned.
- **Purpose.** Enter the purpose of the training or evaluation using standard phraseology; for example, refresher training or PC evaluation.
- **Aircraft Type.** Enter the alphanumeric designation of the aircraft or simulator; for example, UH-60L, OH-58C, UH-1FS, AH-64CMS or UH-60FS. Use of the flight simulator designation is acceptable; for example, 2B24 or 2B60.
- **Date Started.** Enter the date on which the flight training program starts.
- **Must Complete By.** If the training program is time limited, enter the date on which the crewmember must complete it. If the date changes, line through the original date and enter the new date above it. Explain the change in the Comments section.
- **Date.** Enter the day, month, and year of the flight.
- **Flight Data.** This form provides a cumulative record of the time flown under those flight modes normally requiring minimum amounts. Record all flight time in hours and tenths of hours.
- **Time Today.** Enter the total time flown today.
- **Cumulative Time.** Record the total flight time accrued to date.
- **Day Flight-Today.** Enter the time flown today under day flight conditions. For flights conducted under other than day flight conditions, enter the applicable flight mode or condition in the space provided. Then record the time flown today for that flight mode or condition.
- **Day Flight-Cumulative.** Record the total time accrued under day flight conditions. For flights conducted under other than day flight conditions, enter the applicable flight mode or condition in the space provided. Then record the total flight time accrued to date for that flight mode or condition.
- **Duty Position.** Enter the crewmember's duty position for the flight.
- **Seat Position.** Enter the crewmember's seat position for the flight.
- **Overall Grade.** Enter either S or U in the overall grade block after the crewmember completes the flight. This grade reflects the evaluator/trainer's overall assessment of the flight. If the overall flight is graded a “U”, a comment is required on DA Form 4507-2-R.
- **Crewmember Initials.** Have the crewmember initial the grade slip to certify that the crewmember has been debriefed. The initials do not mean that the crewmember agrees with the results.
- **Trainer or Evaluator Name, Rank, and Duty Position.** Enter the trainer’s or the evaluator's first initial, last name, rank, and duty position.
- **Comments.** Enter pertinent comments on DA Form 4507-R or, if more space is required, on DA Form 4507-2-R. Enter the date of the flight and sound, objective comments. If the overall flight, or any individual task is graded U, a comment is required. For unsatisfactory tasks, indicate which standards were not met and any other appropriate remarks. These comments are important for reference by other trainers or evaluators during future training or evaluation.
CREW MEMBER GRADE SLIP

For use of this form see TC 3-04.11; the proponent agency is TRADOC.

<table>
<thead>
<tr>
<th>Name: Sanchez, Frederick J.</th>
<th>Rank: ILT</th>
<th>PID: (CAFRS ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit: F Co, 159th Avn Reg</td>
<td>Purpose: NVG Refresher Training</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aircraft Type: CH-47F</th>
<th>Date Started: 2 Feb 09</th>
<th>Must Complete By: 3 Apr 09</th>
</tr>
</thead>
</table>

Flight Data

<table>
<thead>
<tr>
<th>Date</th>
<th>2 Feb 09</th>
<th>4 Feb 09</th>
<th>5 Feb 09</th>
<th>10 Feb 09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Today</td>
<td>2.2</td>
<td>2.4</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Cumulative Time</td>
<td>2.2</td>
<td>4.6</td>
<td>6.8</td>
<td>9.2</td>
</tr>
<tr>
<td>Day Flight--Today</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day Flight--Cumulative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N	Flight--Today	.2	.3	.2	.2
N	Flight--Cumulative	.2	.5	.7	.9
NG	Flight--Today	2.0	2.1	2.0	2.2
NG	Flight--Cumulative	2.0	4.1	6.1	9.3

<table>
<thead>
<tr>
<th>Duty Position</th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>P</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Seat Position</th>
<th>R</th>
<th>R</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Overall Grade</th>
<th>S</th>
<th>S</th>
<th>S</th>
<th>S</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Crew Member Initials</th>
<th>FS</th>
<th>FS</th>
<th>FS</th>
<th>FS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Trainer or Evaluator Name, Rank, and Duty Position</th>
</tr>
</thead>
</table>

DA FORM 4507-R, DEC 2009

Figure A-12. Example of completed DA Form 4507-R
DEPARTMENT OF THE ARMY FORM 4507-1-R

A-22. Figure A-13 provides an example of DA Form 4507-1-R.

Figure A-13. Example of completed DA Form 4507-1-R
A-23. Instructions for completing the form are as follows:

- **Examinee's Name.** Enter the examinee's name (last, first, middle initial).
- **Page No.** Enter the number of this page.
- **No. Pages.** Enter the total number of DA Forms 4507-1-R used.
- **Date.** Enter the day, month, and year of the flight. It is acceptable to have multiple entries for the same date to specify tasks trained/evaluated in different flight modes. In the blocks under the date, the evaluator/trainer or unit trainer grades each task performed. An unsatisfactory grade “U” requires a brief description of the deficiency in the comments section of DA Form 4507-2-R. Place a diagonal (/) in the grade blocks for all maneuvers or procedures not performed. When three or more consecutive tasks are not graded, place a diagonal line in the first and last task and connect the two with a straight vertical line.
- **Maneuver/Procedure.** Enter the task number followed by the task title as required by the unit’s ATP. Units may list all tasks required by the commander’s task list. Another option is to develop separate forms for each training program; for example; NVG refresher training, RL progression, and mission training. Units may also use a highlighter pen or any other suitable method to track completion of tasks in different modes.

Note. Task titles may be abbreviated to fit within the space provided.

- **Select.** If the form is tailored to the training or evaluation being conducted, use as desired. If the form lists all base and mission/additional tasks, place an "X" in the selection column by each task that is mandatory for the training program or evaluation underway based on the guidance in the applicable ATM, this training circular, the commander's task list, the unit SOP, and other documents.

DEPARTMENT OF THE ARMY FORM 4507-2-R

A-24. The DA Form 4507-2-R (figure A-14, page A-24) is used to record comments and explain DA Form 4507-R and DA Form 4507-1-R entries, as appropriate.

- **Examinee's Name.** Enter the examinee's name (last, first, middle initial).
- **Date.** Enter date of entry.
- **Comments.** Enter comments as necessary. Comments should be clear, concise and objective. These comments are important for reference by other trainers or evaluators during future training or evaluation.
CONTINUATION COMMENT SLIP

For use of this form see TC 3-04.11; the proponent agency is TRADOC.

Examinee's/Trainee's Name: Sanchez, Frederick J.

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 FEB 09</td>
<td>This form is used to continue comments from the DA Form 4507-R comment sheet.</td>
</tr>
</tbody>
</table>

Figure A-14. Example of completed DA Form 4507-2-R
Appendix B

Task Development

AIRCREW TRAINING MANUAL TASK MODEL DEVELOPMENT

B-1. Chapter 4 of this TC authorizes the commander to develop additional tasks if the appropriate ATM does not adequately cover a maneuver or mission that is required to support the unit’s METL. The requirements in paragraph 4-7 are mandatory when developing additional tasks. To develop an additional task, the commander will create the task in the format described in paragraph D-2, assign a 3000-series number to the task, and add it to the individual CTL along with iteration and mode requirements. The commander will ensure that Soldiers receive the necessary academic and flight training for this new task during RL progression and will determine if there is a requirement for an annual evaluation of the task. Commanders will submit a copy of all 3000-series tasks to: Commander, U.S. Army Aviation Center of Excellence (USAACE), ATTN: ATZQ-TDT-F, Fort Rucker, Alabama 36362-5000.

FORMAT

B-2. The following format will be used to develop 3000-series tasks.

TASK NUMBER

B-3. Task numbers start with 3000 and run sequentially (for example, task 3000, task 3001, and so forth).

TASK TITLE

B-4. The task title describes the performance required of the Soldier on the job. It is frequently referred to as the task. It has one action verb and one object and may have a qualifier that describes the required action. Using standard, well-defined verbs aids in providing quality training by—

- Providing/promoting clarity.
- Allowing analysts, task selection boards, trainers, and Soldiers to understand what the task title means.
- Helping to prevent duplication. Using standard verbs makes it simple to group tasks by verbs to avoid duplication.
- Promoting application of sound training principles.

B-5. An example of a task title: Perform Visual Meteorological Conditions Approach. (Do not use acronyms in the title.)

B-6. Warnings, Cautions, and Notes. See examples below.

WARNING

All WARNINGS associated with the task will follow the task title.
CAUTION

All CAUTIONS associated with the task will follow the task title or any WARNINGS.

Note. Notes may be added throughout the text of the task as appropriate.

CONDITIONS

B-7. TRADOC Regulation 350-70 states that task conditions specify the common wartime or training conditions under which the task will be performed. If the new task must be performed in the aircraft, as opposed to the simulator, ensure that “aircraft only” is specified as a condition. (Using the simulator can be explained in the training and evaluation requirements.) Conditions include—

- Whether the task can be accomplished in a simulator, the aircraft, academically, or a combination of these.
- The publications and materials required to perform the task.
- Any special equipment required for the task.
- The flight conditions under which the task will be performed; for example, “visual meteorological conditions (VMC)” or “with reference to instruments only.”
- Any special conditions or tasks that must be accomplished prior to performing the task; for example, in an AH-64D helicopter under VMC.

STANDARDS

B-8. Each task defines all the standards that must be met. Task standards describe the minimum degree of proficiency or standard of performance to which the task must be accomplished. For aviation flight tasks, standards are based on ideal conditions. Standards must be observable and measurable.

B-9. Examples of standards include—

- Select a suitable landing area according to the task description.
- Maintain a constant approach angle, clear of obstacles, to desired point of termination (hover or touchdown).
- Maintain closure rate of an apparent brisk walk.
- Maintain ground track alignment with the landing direction above 50 feet above ground level (AGL) and aircraft in trim ± half of a ball width.
- Align aircraft with landing direction below 50 feet AGL.
- Perform a smooth and controlled termination to a hover or to the ground.
- Perform crew coordination actions according to chapter 6 and the task description.

DESCRIPTION

B-10. Task descriptions are the “how to” portion of the task. Descriptions will normally be divided into two sections—crew actions and procedures. Ensure that the correct designation for the crewmember is used in the description to avoid confusion. Procedures identify the preferred method of accomplishing the task. Make sure the standards for the task are clearly defined in the STANDARDS section; however, it may be necessary to refer the reader to the description section for specific requirements. Using the words will, should, and may (when writing the task description) must be according to the definitions in chapter 1. Deviations are authorized from task procedures—but not crew actions—as long as task standards and safety are not compromised. An example of a task description is shown in figure B-1, page B-3.
Task Development

Figure B-1. Example of a task description

Note. Go-around. The P* should perform a go-around if a successful landing is doubtful or if visual reference with the intended termination point is lost.

Note. Settling with power may be induced by steep approaches.

Note. Hover out of ground effect power may be required in certain situations. Evaluate power required versus power available.

CONSIDERATIONS (NOT MANDATORY FOR ALL TASKS)

B-11. Task considerations define the different requirements for performing the task under different flight modes (night, NVS, or NVG) or under adverse environmental conditions. They must address the unique requirements of performing the task under those conditions.

B-12. An example of night or NVD considerations is shown in figure B-2, page B-4. An example of NVS considerations is shown in figure B-3, page B-4.
NIGHT or NVG CONSIDERATIONS:

a. Altitude, apparent ground speed, and rate of closure are difficult to estimate at night. The rate of descent during the final 100 feet should be slightly less than during the day to avoid abrupt attitude changes at low altitudes. After establishing the descent during unaided flights, airspeed may be reduced to approximately 50 knots until apparent ground speed and rate of closure appear to be increasing. Progressively decrease the rate of descent and forward speed until termination.

b. Surrounding terrain or vegetation may decrease contrast and degrade depth perception during the approach. Before descending below obstacles, determine the need for artificial lighting.

c. Use proper scanning techniques to avoid spatial disorientation.

Figure B-2. Example of night or night vision goggle considerations

NVS CONSIDERATIONS:

a. Obtain the rate of descent during the approach from the vertical speed and radar altitude analog scale symbologies.

b. Symbology enhances approach angle determination and maintenance. When the aircraft is aligned with the intended landing area, position the line of sight (LOS) reticule on the intended landing point. The separation between the LOS reticule and the head tracker will provide an approximate angle to touchdown when correlated to aircraft attitude. The attitude of the aircraft varies as a function of the stabilator mode that is selected.

c. The location and gimbal limits of the forward looking infrared radar sensor prevent the P* from seeing the actual touchdown point. To avoid overshooting, establish a new reference point beyond the intended touchdown point.

Figure B-3. Example of night vision system considerations

REFERENCES

B-13. References list sources of information relating to the task. List only unique references for example, FM 3-04.203 (figure B-4, Page B-5).
TASK 3000

Perform Mountain Approach

WARNING

All WARNINGS associated with the task will follow the task title.

CONDITIONS: TRADOC Regulation 350-70 states that task conditions specify the common wartime or training conditions under which the task will be performed. If the new task must be performed in the aircraft, as opposed to the simulator, ensure that “aircraft only” is specified as a condition. Using the simulator can be explained in the training and evaluation requirements.

STANDARDS: Each task defines all the standards that must be met. Task standards describe the minimum degree of proficiency or standard of performance to which the task must be accomplished. For aviation flight tasks, standards are based on ideal conditions. Standards must be observable and measurable.

DESCRIPTION:

a. Crew actions: Ensure that the correct designation for the crewmember is used in the description to avoid confusion.

b. Procedures: Identify the preferred method of accomplishing the task.

NIGHT or NVG CONSIDERATIONS:

a. Task considerations define the different requirements for performing the task under different flight modes (night, NVS, or NVG) or under adverse environmental conditions.

b. They must address the unique requirements of performing the task under those conditions.

TRAINING and EVALUATION REQUIREMENTS:

- Training - Training may be conducted in the aircraft or simulator.
- Evaluation - The evaluation will be conducted in the aircraft.

REFERENCES:

- FM 3-04.203.

Figure B-4. Format for a task
Appendix C

Aircrew Training Program Standing Operating Procedure

INTRODUCTION

C-1. The sample ATP SOP is intended as a guide to what should be addressed in a unit’s ATP SOP. This sample is not intended to be prescriptive in nature. At a minimum the SOP must address the following areas:

- The conduct of training.
- Crewmember and crew evaluation.
- PC training, assessment, and evaluation.
- Assessment of the ATP effectiveness.
- Revision of the ATP.
- The requirements from DA PAM 385-90, as applicable.

C-2. Text in italics is commentary. It explains the section in which the text is found. Where a brief explanation may be insufficient to explain an SOP section, a sample section is included.

C-3. Where appropriate, information references are included and should be consulted to clarify any material not in this sample.

STANDING OPERATING PROCEDURE SECTIONS

INTRODUCTION

C-4. The introduction is normally a short section explaining the following items:

- General. The general section introduces the training SOP.
- Suggested improvements. State the unit’s procedures for suggesting changes to the SOP.
TABLE OF CONTENTS

C-5. Self explanatory. Figure C-1 shows a table of contents that an ATP SOP should contain, if applicable.

<table>
<thead>
<tr>
<th>Training Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanders delegation of authority</td>
</tr>
<tr>
<td>Revision of SOP</td>
</tr>
<tr>
<td>Assessment of SOP</td>
</tr>
<tr>
<td>AIRF</td>
</tr>
<tr>
<td>Standardization Committee</td>
</tr>
<tr>
<td>Commanders’ Evaluation</td>
</tr>
<tr>
<td>Proficiency Flight Evaluation</td>
</tr>
<tr>
<td>Local Orientation Requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Training Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduct of Training</td>
</tr>
<tr>
<td>Crew Qualification, Selection, Training, Designation and Evaluation Requirements</td>
</tr>
<tr>
<td>Mission Brief/Approval Training and Certification Program</td>
</tr>
<tr>
<td>No-Notice Evaluation program</td>
</tr>
<tr>
<td>AMC Training and Certification Program</td>
</tr>
<tr>
<td>Night/NVS/NVG Training and Maintenance Program</td>
</tr>
<tr>
<td>Aviation Mission Survivability Training Program</td>
</tr>
<tr>
<td>Instrument Flight and Instrument Inadvertent Meteorological Condition training</td>
</tr>
<tr>
<td>Simulator Flight Training System Training Requirements</td>
</tr>
<tr>
<td>Collective Training Requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional Training Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Training Program and Makeup Requirements</td>
</tr>
<tr>
<td>Annual ALSE Training</td>
</tr>
<tr>
<td>Aeromedical Training Requirements</td>
</tr>
<tr>
<td>CBAT, CID Training and Simulator Program, ROCV Requirements, and Personnel Recovery</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special Interest and Unique Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infiltration/Exfiltration techniques (rappelling, fast rope insertion/extraction system, special purpose insertion/extraction system)</td>
</tr>
<tr>
<td>Parachute Operations</td>
</tr>
<tr>
<td>Deck Landing Operations</td>
</tr>
<tr>
<td>External Refueling Systems</td>
</tr>
<tr>
<td>Environmental Training Program</td>
</tr>
<tr>
<td>CBRN Training</td>
</tr>
<tr>
<td>Aerial Gunnery Training Program</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations in a Tactical Environment</td>
</tr>
<tr>
<td>Fighter Management/Crew Rest Procedures</td>
</tr>
<tr>
<td>Terrain Flight Hazard Avoidance</td>
</tr>
<tr>
<td>External and Internal Load Operations</td>
</tr>
<tr>
<td>Multiship Operations</td>
</tr>
<tr>
<td>Passenger and Troop Carrying Procedures and Briefing</td>
</tr>
<tr>
<td>Command-and-Control Procedures with Ground Commander</td>
</tr>
<tr>
<td>FARP Procedures</td>
</tr>
<tr>
<td>Extreme environmental operations (blowing snow/sand, desert, arctic/cold weather, mountain, jungle and overwater)</td>
</tr>
</tbody>
</table>

Figure C-1. Aircrew training program standing operating procedure requirements
COMMANDER'S DELEGATION OF AUTHORITY

C-6. An ATP may be implemented at a level higher than the level at which it is administered; for example, an ATP implemented at brigade level but managed at the battalion and company level. To clarify responsibility and clearly delineate authority, the ATP should have a section that defines the roles of subordinate commanders in managing the ATP (figure C-2, page C-3).

a. References:
 - AR 95-1.
 - AR 95-2.
 - Local command supplements to AR 95 series.
 - TM 1-1500-328-23.
 - DA PAM 738-751.
 - TC 3-04.11.
 - Appropriate local regulations and policies.
 - NG Supplement 1 to AR 95-1.

b. Purpose. If the commander chooses to delegate or otherwise define authority in the unit ATP, it should be described in the SOP.

c. Responsibilities. This section defines delegation authority.

d. General. Due to organizational differences, and those situations that might arise through deployments and temporary attachments/assignments, it may be necessary to define ‘commander’ for purposes of ATP implementation.

e. AR 95-1. Specific authority is defined and described. This section states the respective authorization as established by the commander who has overall responsibility for the ATP.

Figure C-2. Example of standing operating procedure—role of subordinate commanders

AIRCREW TRAINING PROGRAM

C-7. This section is the heart of the ATP SOP. It outlines the commander’s intent for training and sustaining proficiency for all assigned and attached crewmembers (figure C-3, page C-4).
Appendix C

a. References:
 - AR 95-1.
 - Local command supplements to 95-1 as appropriate.
 - AR 600-105.
 - AR 600-106.
 - TC 3-04.11.
 - Appropriate local regulations and policies.
 - NG Supplement 1 to AR 95-1.

b. Purpose: The purpose states the commander’s intentions for the ATP. It should also establish who is covered by the unit’s policy.

c. Responsibilities: The ATP chapter identifies key personnel and briefly states their responsibilities in the training program.

d. The Aircrew Training Program: This section of the chapter outlines specific procedures for managing the unit’s ATP. At a minimum it should address—
 - FAC designation (and specifically identify those MTOE positions that are FAC 1, 2, and 3).
 - The process for incorporating a newly assigned crewmember into the ATP.
 - The RL progression process and any local documentation requirements. This section should also state those requirements that are unit mandated in excess of TC 3-04.11 requirements.
 - Continuation training requirements for crewmembers that have completed RL progression. Evaluations, local requirements, and documenting training in excess of TC 3-04.11 requirements should be stated.
 - Required evaluations and any command guidance on more demanding modes of flight; for example, NVG versus Day.
 - Use of simulators for evaluations.
 - Procedures for processing crewmembers who have failed an evaluation.
 - Commander’s required tasks for currency proficiency flight evaluations.
 - Include all modes of flight applicable to the unit; for example, day, night vision goggles, night vision system.
 - Procedures for crewmembers that have not completed requirements established by TC 3-04.11 or the ATP chapter.

e. STX. The chapter addresses the commander’s guidance on using STXs to enhance training. Tracking the performance of STXs at the individual level is not required; however, it is recommended. The unit policy on tracking STX performance should be established in this section.

f. ACT-E. This section contains the commander’s guidance on initial, refresher, and continuation ACT-E training. It also contains any evaluation requirements established by the commander in excess of those established by TC 3-04.11.

g. IATF. While the requirements of TC 3-04.11 are mandatory for maintenance of IATFs, units may direct additional procedures or policies for maintaining these important training records; for example, establish a requirement for company SP/IPs to review each IATF.

h. Unit Forms. If a commander determines that specific unit-unique forms or formats are required to efficiently maintain the unit’s ATP, this chapter must contain examples of those blank forms or formats.

i. Additional Tasks. The unit’s ATP chapter must specify those tasks the commander has determined are necessary to accomplish the unit’s METL missions but for which no task is published in the applicable aircraft’s ATM. These tasks are developed by the unit as necessary. See chapter D of TC 3-04.11 for guidance in developing 3000-series tasks. Once developed, these tasks must be included in the unit ATP.

Figure C-3. Example of standing operating procedure—commander’s intent
CREW QUALIFICATION AND SELECTION

C-8. Crew qualification and selection are the bedrock of an ATP. Procedures and responsibilities for key unit personnel should be identified and explained (figure C-4).

| Reference. AR 95-1 and as supplemented by NG Supplement 1 to AR 95-1. |
| Purpose. To establish the commander's flight crew qualification and selection program. |
| Responsibilities. Briefly describes the responsibilities of key unit personnel in the crew qualification and selection process. |
| Qualification Requirements. If unit requirements are more stringent than TC 3-04.11 or AR 95-1, or, if the unit has unique requirements for duty positions, they should be stated. At a minimum, this section should address the following crewmember duty positions: |
| • Copilot (CP). |
| • Pilot (P*). |
| • Pilot in Command (PC). |
| • Unit Trainer (UT). |
| • Standardization Instructor Pilot (SP)/Instructor Pilot (IP). |
| • Instrument Examiner (IE). |
| • Maintenance Test Pilot (MP)/Maintenance Examiner (ME). |
| • Crew Engineer (CE). |
| • Flight Engineer (FE). |
| • Nonrated Crewmember Instructor (FI). |
| • Nonrated Crewmember Standardization Instructor (SI). |
| Evaluation Requirements. This section establishes the commander’s requirements for conducting standardization evaluations used to establish a duty position. Any requirement that exceeds TC 3-04.11 or AR 95-1 should be stated. |

Figure C-4. Example of standing operating procedure—crew qualification and selection program

MISSION BRIEFER/APPROVAL TRAINING CERTIFICATION PROGRAM

C-9. Commanders, O-5 and above, will develop and publish policies and procedures for the mission approval process for those units under their command. Commanders will establish a training and certification program to ensure standardization and understanding of the mission approval and risk-management process for personnel (figure C-5, page C-6).
Appendix C

a. Reference. AR 95-1 and as supplemented by NG Supplement 1 to AR 95-1.
b. Purpose. To establish the commander’s mission briefer and approval authority.
c. Responsibilities. Briefly describes the responsibilities of key unit personnel in the mission briefing and approval authority qualification and selection process.
d. Qualification Requirements. Commander or their designated representative that interacts with the mission crew or Air Mission Commander to identify, assess, and mitigate risk for the specific mission. Commanders will select briefing officers based on their experience, maturity, judgment, and ability to effectively mitigate risk to the aircrew and designate them by name and in writing. Mission Briefers are authorized to brief regardless of risk level. Briefing officer must be a qualified and current pilot in command in the mission profile as determined and designated by the commander. Mission briefing officers will, at a minimum, review and assess the following key areas in the mission planning process:

- The flight is in support of an operational unit mission and has been approved by step one.
- The crew understands the mission and possesses situational awareness of all tactical, technical and administrative mission details.
- Assigned flight crews have been allocated adequate pre-mission planning time and the mission is adequately planned to include performance planning, NOTAMs, and coordination with supported units.
- Assigned flight crews are qualified and current for the mission according to AR 95-1. The commander’s flight crew qualification and selection program according to paragraph 4-18, to include ALSE with current inspections, aircrew reading file currency, and crew experience appropriate for the mission.
- Forecast weather conditions for the mission, including departure, en route and arrival weather, meet the requirements of AR 95-1 and local directives.
- Flight crews meet unit crew endurance requirements.
- Procedures in the commander’s risk management program are completed and mitigated to the lowest level possible.
- Required special mission equipment is operational.

Final mission approval authority is designated to members of the chain of command who are responsible for accepting risk and approving all aviation operations (ground and air) within their unit. Final mission approval authorities may only approve those missions whose assessed risk level is commensurate with their command level. At a minimum, company commanders and below are the final mission approval authority for low-risk missions, battalion commanders and above for moderate risk missions, brigade commanders and above for high-risk missions, and the first general officer in the chain of command for extremely high-risk missions. Approval authorities are based upon levels of command authority and not rank. Based on the resulting mitigated risk, the appropriate final approval authority reviews the mission validity, planning, risk mitigation, and authorizes the flight/operation according to the commander’s policy. The final approval authority indicates authorization for flight by initialing the DA Form 5484 with the briefing officer and pilot in command/air mission commander.

Figure C-5. Example of standing operating procedure—mission brief/approval training certification program.

STANDARDIZATION COMMITTEE

C-10. Responsibilities of the unit standardization committee are to coordinate, disseminate, and administer flight standardization procedures and assure that all flight maneuvers and written flight examinations are conducted according to the operator’s manual, the ATM, and the unit’s SOP. This portion of the ATP SOP addresses every aspect of these committees (figure C-6, page C-7).
Aircrew Training Program Standing Operating Procedure

Figure C-6. Example of standing operating procedure—standardization committee responsibilities

AIRCREW INFORMATION READING FILE

C-11. Information constantly changes in the aviation area. To ensure aircrews have access to the most current information in a timely manner, each unit will establish an AIRF. In this section of the SOP, the unit addresses how the AIRF is maintained. This section will also establish the frequency at which crewmembers must read the AIRF (figure C-7).

Figure C-7. Example of standing operating procedure—aircrew information reading file

AVIATOR ORIENTATION TRAINING

C-12. Aviator orientation training (local area orientation) is an important part of the ATP. It is required to be accomplished prior to a crewmember being designated RL 1. This ATP section should establish those specific procedures necessary to comply with AR 95-1 and the TC 3-04.11. Documentation aides—for example, checklists, or other local forms or records used to document local area orientations—must be addressed in this portion of the ATP SOP (figure C-8, page C-8).
Appendix C

a. References:
 • AR 95-1.
 • TC 3-04.11.
 • NG Supplement 1 to AR 95-1.

b. Purpose: States the purpose for the local area orientation as required by TC 3-04.11 before progression to RL 1.

c. General: Establishes any unit requirements for conducting and documenting the local area orientation that are more restrictive than published guidance—for example, use of unit checklists, location of unit checklist in IATF, how long the information is maintained in the IATF, and so forth.

Figure C-8. Example of standing operating procedure—aviator orientation training

PILOT-IN-COMMAND SELECTION, EVALUATION, AND DESIGNATION

C-13. The unit’s process for electing, evaluating, and designating crewmembers to perform PC duties must be addressed in the ATP SOP (figure C-9).

a. References.
 • AR 95-1.
 • Vice Chief, Staff of the Army message dated 20 Dec 04, Aviation Safety Directive/Guidance.
 • TC 3-04.11.
 • NG Supplement 1 to AR 95-1.

b. Purpose. Clearly and briefly state the commander’s intent for the unit’s PC policy. A sample purpose statement follows.

c. Responsibilities. Establishes responsibilities for key personnel in the PC selection and assessment process.

d. General. A PC is an aviator that has demonstrated the judgment and ability to perform all of the mission requirements for the assigned aircraft; uses proper procedures and operates the aircraft safely and maturely. The PC is proficient and knowledgeable in all aspects of the unit’s mission and is capable of executing all appropriate mission tasks. Experience, knowledge, and maturity are the requirements of a PC.

e. Prerequisites. Should address—
 • Aircraft qualifications and currency.
 • The demonstrated of sound judgment and maturity in daily work/flight activities.
 • Technically and tactically proficient in the unit’s mission.

Note. MPs and MEs in an authorized maintenance test pilot position must complete the prerequisites as outlined above before designation of RL 1 status.

f. Selection Board/Committee. Each unit commander will establish a selection board. This board should consist of, but not be limited to Commander, Platoon leader, SP or IP, Safety officer, and PC making recommendations based on firsthand flight experience of the nominee’s capabilities and judgment while performing flight duties.

g. Training and Evaluation Requirements. Commanders may tailor the PC training requirements for aviators with significant experience in the type aircraft and unit mission.

h. Administrative Considerations. How the PC process—candidate selection through designation in writing by the commander—is conducted should be logically and concisely stated. Include guidance on who may administer the evaluation. If locally produced forms are used, instructions for completing all entries should be addressed.

Figure C-9. Example of standing operating procedure—PC selection and designation
NO-NOTICE EVALUATION PROGRAM

C-14. A comprehensive no-notice program ensures high standards of proficiency are maintained in the unit. The commander must state the no-notice policy for the unit (figure C-10).

- References.
 - AR 95-1.
 - TC 3-04.11.
 - Appropriate aircraft ATM.
 - NG Supplement 1 to AR 95-1.

- Purpose. A brief statement of the commander’s intent for the unit’s no-notice program.

- Responsibilities. This section identifies the key unit personnel involved in the no-notice program and briefly states their respective responsibilities.

- No-Notice Program Procedures. This section of the annex establishes the procedures for how no-notice evaluations are conducted, their frequency, and how the unit documents them.

Figure C-10. Example of standing operating procedure—no-notice evaluation program

AIRCRAFT SURVIVABILITY EQUIPMENT/COMPUTER-BASED AIRCRAFT SURVIVABILITY EQUIPMENT TRAINING/THREAT TRAINING PROGRAM

C-15. The ability to fully use all ASE when performing METL missions is important. A comprehensive ASE/CBAT threat training program improves crewmember survivability and assists in preventing fratricide (figure C-11).

- References.
 - AR 95-1.
 - TC 3-04.11.
 - AR 190-51.
 - AR 385-10.
 - NG Supplement 1 to AR 95-1.

- Purpose. A brief statement describing the commander’s intent for the ASE/CBAT threat training program—for example: To establish policies and procedures for standardizing TACOPS, AMS, ASE, CBAT, and combined/joint operations. In addition, enhance the ASE operability, and threat capabilities knowledge of the aircrews.

- Responsibilities. Identifies and states the responsibilities of key unit personnel in administering the unit’s ASE/CBAT/threat training program.

- ASE/CBAT/Threat Training Program. This portion of the SOP describes in detail who, what, when, and where the training is conducted. It should contain sufficient detail so that the training program is understood by the unit’s TACOPS officers and trainers. The use of TADSS should be addressed and include flight operations against threat simulators at home station and at Army training centers.

- Tactical Employment of ASE. (See tactical standing operating procedure [TACSOP]). Commanders should not place real-world combat procedural policies in the aircrew training SOP.

Figure C-11. Example of standing operating procedure—aircraft survivability equipment/computer-based aircraft survivability equipment training/threat training program
SIMULATOR TRAINING

C-16. Simulation is an important part of any aircrew training program. The commander’s intent should be stated on using simulators as tools to attain and sustain proficiency (figure C-12).

<table>
<thead>
<tr>
<th>a. References.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• AR 95-1.</td>
</tr>
<tr>
<td>• TC 3-04.11.</td>
</tr>
<tr>
<td>• Appropriate aircraft ATM.</td>
</tr>
<tr>
<td>• NG Supplement 1 to AR 95-1.</td>
</tr>
</tbody>
</table>

b. Purpose. State the commander’s intent for the conduct of training using simulation devices.

c. Responsibilities. This section identifies key personnel involved in simulator training and their specific responsibilities. An important point to address is scheduling meetings at which the organization responsible for the simulators coordinates the distribution of simulation training periods. Likewise, responsibility for scheduling and distributing simulation training periods—to include in-unit simulation devices; for example, TADS, selected task trainer and the AVCATT should be addressed in this section.

d. General. This portion of the chapter concerns the specific use of simulation devices by the unit aircrews. Modes of flight, use of scenarios or situational training exercises, and report times to simulation facilities would be some of the items addressed here.

Figure C-12. Example of standing operating procedure—simulator training

NIGHT/NIGHT VISION GOGGLE/NIGHT VISION SYSTEM TRAINING

C-17. This section establishes the commander’s policy on all aspects of night and NVD training in the unit. It also establishes requirements for individual and crew training (figure C-13, page C-11).
a. References.
- AR 95-1.
- AR 95-2.
- TC 3-04.11.
- FM 3-04.203.
- NVG and ISAQ messages and memorandums.
- NG Supplement 1 to AR 95-1.

b. Purpose. This section should state the commander’s intent for the night/NVD training.

c. Responsibilities. Key personnel and their specific responsibilities should be identified.

d. General. The general section should address, at a minimum, these specific areas—crew endurance, weather requirements, and aided and unaided aircraft in the same flight.

e. Night Unaided Semiannual Minimums. Units should establish a requirement to maintain unaided night flying proficiency.

f.NVG. In this chapter, units that have aircraft with night visions systems must address any unit-specific requirements that exceed TC 3-04.11 and individual ATM requirements. Proficiency, currency, and evaluation requirements and commander-selected tasks to be performed during proficiency flight evaluations are some items that should be addressed in this section.

g. NVG. Units that perform flight with NVG must address those unit-specific requirements that exceed TC 3-04.11 and individual ATM requirements. NVG TSP, training weather minimums, or other local policies and procedures would be placed in this section. This section would also include those mission and additional tasks that the commander selects for NVG crew and continuation training. Any unique unit requirements or procedures for documenting NVG training must also be placed into this section. As a minimum, the SOP should include—
- Crew duties.
- Standardized terminology.
- Disorientation procedures.
- Standardized radio configuration.
- Care and security of night vision devices.
- Unaided and aided flight routes and requirements.
- Vertical helicopter instrument recovery procedures.
- Weather requirements for unaided and aided night training.
- Additional light sources authorized for aided night flight.
- Illumination requirements for unaided and aided night flight.
- Special tactical operations such as multi-helicopter operations and FARP operations.
- C2 or cover aircraft requirements for unaided and aided night operations.
- Crew endurance requirements for unaided and aided night flight, to include allowable flight time.
- Aircraft lighting configurations and modification requirements for unaided and aided night flight.

Figure C-13. Example of standing operating procedure—night/night vision goggle/night vision system training

AERIAL GUNNERY TRAINING

C-18. A gunnery annex to the unit ATP SOP should be established by all units—attack/reconnaissance and utility/cargo. The commander establishes the requirements and standards for the unit’s gunnery training and qualification program. A gunnery training program based on academic training conducted throughout the training year and hands-on qualification will result in proficient crewmembers (figure C-14, page C-12).
Appendix C

C-12 TC 3-04.11 19 November 2009

a. References.
 • AR 350-1 (as appropriate).
 • AR 350-3 (as appropriate).
 • DA PAM 350-38.
 • FM 3-04.140.
 • Aircraft Operator’s Manual.
 • AR 385-63.
 • TB MED 524.
 • NG Supplement 1 to AR 95-1.

b. Purpose. A clear and concise statement of the commander’s intent for the unit gunnery training program.

c. Responsibilities. Identifies key unit gunnery training personnel and their specific responsibilities in the gunnery training program. This section will vary between the type of units with master gunners having prominent duties in attack/reconnaissance unit SOPs and NCM standardization instructors likewise prominent in utility/cargo units.

d. General. The general section should clearly state unit requirements and procedures for gunnery training to include annual and pre-gunnery requirements. This section applies to both reconnaissance/attack and cargo/utility units.

e. Training and Execution. This section should outline the specific processes and procedures the unit uses to conduct gunnery training. Using standard Army regulations and publications through reference is strongly recommended. Where unit procedures or requirements are more stringent than published guidance, the unit procedure or requirement must be stated.

f. Training and Qualification Requirements. This section explains training and qualification requirements. Unless a unit has received a waiver to requirements, the references in the following example will apply: DA PAM 350-38 and FM 3-04.140 outline training and qualification requirements. Training readiness condition (TRC) is a training RL with prescribed standards and resources. HQDA determines TRC assignments required by units to attain and sustain gunnery standards.

g. Out-Front Boresight Target (AH-64 ONLY). This section should address the location of authorized out-front boresight targets and their use before firing live ordinance.

h. Range Requirements. Range and ammunition supply point requirements are a function of both Army and local regulations. This section should identify applicable regulations and identify key personnel required to be trained or certified for range operations.

i. Aircraft Emergencies. For all range operations, a clear and concise emergency plan is required. This section should state the unit’s plan and identify emergency landing areas.

j. Required Documentation/Record keeping. Identify those unit requirements to document training that are more stringent then required by regulation or field manual. The responsible party for maintaining attendance rosters, evaluations, and reports not otherwise covered by TC 3-04.11 or FM 3-04.140 should be established in this section.

k. Tabs/Enclosures. Additional, detailed requirements, checklists, or qualifications should be added as enclosures or tabs to this chapter.

Figure C-14. Example of standing operating procedure—aerial gunnery training

ENVIRONMENTAL TRAINING

C-19. This section establishes the commander’s policy on environmental training. It also establishes requirements for individual and crew training (figure C-15, page C-13).
a. References.
 • AR 350-1.
 • AR 385-10.
 • TC 3-04.11.
 • Appropriate aircraft operator’s manual.
 • FM 3-04.203.
 • Local policies and regulations.
 • NG Supplement 1 to AR 95-1.

b. Purpose. A brief statement of the commander’s intent for the unit’s environmental flight training program to standardize planning, training, and evaluation requirements for operations in areas where terrain and/or environmentally diverse conditions exist that are other than the normal conditions encountered in the home station local flying area.

c. Responsibilities. This section identifies the key personnel and briefly states their responsibilities for environmental training.

d. General. This section establishes overall policies and procedures used to train environmental flight. When guidance is more restrictive than TC 3-04.11 or other regulations, the guidance should be stated.

e. Environment Specific Requirements. When specific procedures and policies are required for unique environments, the procedures or policies must be stated.

Figure C-15. Example of standing operating procedure—environmental training

AIR MISSION COMMANDER TRAINING PROGRAM

C-20. This section will establish minimum training requirements for the commander’s designation as an AMC for all multiship flight operations (figure C-16, page C-14).
Appendix C

a. References.
 - AR 95-1.
 - TC 3-04.11.
 - FM 1-100, FM 3-04.111, FM 3-04.113, FM 3-04.126.
 - Unit TACSOP.
 - NG Supplement 1 to AR 95-1.

b. AMC/Flight Lead Team. The commander will assign an AMC and a flight lead team for all multiaircraft missions upon receipt of a warning order. Based on the complexity of the mission, the battalion commander may elevate the selection of this team to the appropriate level to ensure mission success. The SOP should address the flow of air mission planning to include:
 - AMC’s key tasks and mission contingencies.
 - AMC’s and flight lead map rehearsal, refine the plan, and any contingencies requirements.
 - AMC’s aircrew briefing, rock drill, map rehearsal, and back brief to ensure understanding of the mission by all elements.
 - Fuel and Ammunition. What is the fuel required for the mission for all airframes? What is the refuel and rearm plan? What is the backup plan for refuel? Will the attack assets provide continuous coverage on the objective? What munitions are required for the mission and are they available at the FARP?
 - Weather. What is the minimum weather condition required to accomplish the mission? How will weather and illumination impact the mission? What is the maximum illumination? Does the mission timeline maximize the effects of illumination, moon angle, and lunar data?
 - Crew Management. Can the mission be accomplished within duty day and warfighter management requirements? Can the time flow be altered or compressed or eliminate unnecessary events or delays?
 - Communications. Has the mission been planned and rehearsed to maximize communications discipline? Can the mission be accomplished if communications systems fail at a critical moment in the mission? Is there communications redundancy? Can the mission go with a complete loss of communications? What over the horizon communication assets are available and what is the communications status of each aircraft?
 - Fratricide. How will friendly troops be marked/identified?
 - Fires. What are the fire control measures? How are friendly troops on the ground identified? Who has priority of fires? What assets are available for fires?
 - Maintenance. What is the aircraft bump plan? Does the maintenance posture meet mission requirements to successfully execute the ground tactical plan? What is the DART plan? What is the maintenance recovery plan to meet follow-on mission requirements?
 - Medical Plan. What medical assets are available in the ground force? What is the ground medical evacuation plan? What is the casualty evacuation plan? Where is the nearest medical facility and how long does it take to fly there from the objective? Are MEDEVAC assets available and incorporated into the mission?
 - Miscellaneous. How does aircraft performance limit the ability to accomplish the mission? Will environmental factors limit aircraft capability to accomplish the assigned mission? Have the serials been designed to maximize use of ASE, weapons systems, special missions systems, and so forth? What special mission equipment is required and is it available and fully mission capable?

c. AMC Designation. Aviators who complete a formal AMC training program will receive an entry in the DA Form 7122-R stating completion of the training. Commanders may designate personnel to perform AMC duties without formal training who meet the experience and maturity qualifications outlined above.

Figure C-16. Example of standing operating procedure—air mission commander training program
MULTISHIP OPERATIONS TRAINING

C-21. In this, the commander establishes unit policy on multiaircraft training. It also establishes requirements for individual and crew training (figure C-17).

<table>
<thead>
<tr>
<th>a. References.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• AR 350-1.</td>
</tr>
<tr>
<td>• AR 385-10.</td>
</tr>
<tr>
<td>• TC 3-04.11.</td>
</tr>
<tr>
<td>• FM 3-04.203.</td>
</tr>
<tr>
<td>• The unit TACSOP.</td>
</tr>
<tr>
<td>• NG Supplement 1 to AR 95-1.</td>
</tr>
</tbody>
</table>

b. Purpose. A brief statement of the commander’s intent for the unit’s formation flight training policy.

c. Responsibilities. Identifies key personnel and states their responsibilities for formation flight training.

d. General. This section states the unit’s policies and procedures for formation flights that are more restrictive than TC 3-04.11 or regulations. When more restrictive measures are used, they must be stated here.

e. Formation Flight Checklist. Commanders may direct that local checklists or forms be used during formation flight briefings and operations. These items must be published in the chapter if so used.

f. Lost or Disoriented. The unit should establish a lost/disoriented policy that complies with local regulations.

g. IIMC. Establishes any requirements unique to low visibility environments such as standard inadvertent instrument meteorological conditions breakup.

h. Emergencies. Establishes procedures to deal with emergencies during formation flights. These may also include procedures for dealing with blowing dust/sand/snow during formation takeoffs and landings.

Figure C-17. Example of standing operating procedure—multiship operations training

COMBAT IDENTIFICATION TRAINING INTEGRATION

C-22. Commanders must establish a CID (fratricide) training program to avoid friendly-fire casualties on the battlefield (figure C-18, page C-15).
Appendix C

C-16 TC 3-04.11 19 November 2009

Figure C-18. Example of standing operating procedure—combat identification training

ACADEMIC TRAINING

C-23. To ensure proficient crewmembers, commanders will establish a cyclic and comprehensive academic program to be administered throughout the training year (figure C-19).

Figure C-19. Example of standing operating procedure—academic training

CHEMICAL, BIOLOGICAL, RADIOLOGICAL, AND NUCLEAR TRAINING AND EVALUATION

C-24. Crewmembers must be proficient in operating in CBRN battlefield environments. In this section, the commander establishes the unit training program that trains crewmembers to standard and maintains proficiency in CBRN operations (figure C-20, page C-17).
a. References.
 • TC 3-04.11.
 • Aircraft operator’s manual (aircraft equipped with CBRN-related equipment).
 • Unit TACSOP.
 • NG Supplement 1 to AR 95-1.

b. Purpose. A statement of the commander’s intent for unit CBRN flight training and evaluation program.

c. Academic Training. This section establishes the lessons and frequency of academic training for CBRN flight training. It should also address documentation of crewmember training on CBRN subjects.

d. Flight Training. This section establishes the flight training requirements procedures used during CBRN training. Where the unit’s requirements or procedures are more restrictive than TC 3-04.11 or the aircraft ATMs, the requirements and procedures must be stated. This section should address initial and continuation training. It should also address evaluations.

Figure C-20. Example of standing operating procedure—chemical, biological, radiological, and nuclear training and evaluation

AVIATION LIFE SUPPORT EQUIPMENT TRAINING

C-25. ALS is a vital part of every crewmember’s equipment. Training in the use and function of ALS could prove critical should a crewmember be forced into a survival situation (figure C-21).

a. References. Refer to the unit safety SOP (identify specific chapter).

b. Purpose. A brief statement of the commander’s intent for the unit’s ALS training program.

c. Responsibilities. Identifies key personnel and their responsibilities for ALS training.

d. General. Establishes the unit policies and procedures for conducting ALS training. When policies and procedures are more restrictive than outlined in AR 95-1 and as supplemented by NG Supplement 1 to AR 95-1 or TC 3-04.11, the policies or procedures must be stated.

Figure C-21. Example of standing operating procedure—aviation life support equipment training

INSTRUMENT FLIGHT TRAINING

C-26. The ability to conduct operations in instrument flight conditions requires constant training to maintain proficiency. In some units—for example, attack and reconnaissance—instrument flight is not normally considered a top priority. To ensure that crewmembers maintain proficiency in instrument operations, commanders may choose to emphasize instrument flight training in the ATP (figure C-22, page C-18).
a. References.
 • AR 95-1.
 • FM 3-04.240.
 • Airman’s Information Manual.
 • Federal Aviation Regulations.
 • Appropriate local regulations and publications.
 • NG Supplement 1 to AR 95-1.

b. Purpose. A brief statement of the commander’s intent for the unit’s instrument flight training chapter.

c. Responsibilities. Identifies the responsibilities of unit members for instrument flight training.

d. Training. Establishes the unit policy on instrument flight training. Where there is more restrictive than regulations, TC 3-04.11, or aircraft ATMs, the policy and requirements must be stated. This section should address individual, crew, and continuation training.

Figure C-22. Example of standing operating procedure—instrument flight training
Appendix D

Aircrew Training Program Process Flow Charts

D-1. The unit ATP is not a simple or intuitive process. There are numerous requirements and often qualifying conditions on which additional requirements are based. To assist the unit ATP implementers, this appendix contains process flow charts to help aviation Soldiers and their commanders understand the flow of decisions and actions for specific instances. These flow charts are not directive in nature. The flow charts are intended as a guide in using this manual to conduct certain processes that arise while implementing a unit ATP (figure D-1 through figure D-6, pages D-2 through D-7).

D-2. These flow charts are not inclusive of all situations that might arise while managing an aircrew training program. ATP implementers must read the applicable sections of the training circulars.

Note. Waivers are not addressed in the flow charts. Waiver requests for TC 3-04.11 requirements must be evaluated on the facts unique to each circumstance.
Figure D-1. Integration into unit
Figure D-2. Night vision goggle integration/training
Figure D-3. Failed standardization evaluation
Figure D-4. Refresher training
Figure D-5. Annual proficiency and readiness test period
Figure D-6. Postaccident evaluation
This page intentionally left blank.
Appendix E
Commander and Crewmember Aviation Medicine Responsibilities

INTRODUCTION

E-1. This appendix is not intended to create new requirements as part of the commander’s ATP, but to provide consolidated aeromedical information requirements for maintaining flight status medical standards, which are prerequisite for participation in the ATP.

E-2. It is the crewmember’s responsibility to have an understanding of aviation medicine, complete the medical requirements for maintaining flight status, and adhere to AR 40-8. Failure in this may identify the crewmember as an aviation safety risk, disqualify him/her from aviation duty, and result in a flying evaluation board. The unit commander has overall responsibility for the conduct of the Aviation Medicine Program. Operation and administrative responsibility for the program will be delegated to the assigned/supporting flight surgeon/aeromedical physician assistant at the discretion of the commander.

AVIATION MEDICINE STANDARDS

E-3. Units without an authorized or assigned flight surgeon, the local medical treatment facility commander, and/or the command surgeon (Army Command [ACOM], USARC, or state surgeon) will provide personnel and equipment for the Army Aviation Medicine Program at the local level. (DA PAM 385-90, paragraph 1-4p, AR 616-110, paragraph 12b.)

E-4. Crewmembers’ IFRF (or ATS controller records) will contain the required DA Form 4186 and will be completed correctly. (AR 40-501, paragraph 6-11d.)

Note. The aircrew member is responsible for maintaining a current medical certification-DA Form 4186. In order to have a current medical examination (DA Form 4186), the aircrew member MUST maintain a current and qualified flight duty medical examination or flight duty health screen.

E-5. Individual flight records will contain applicable medical waiver approval letters. (AR 40-501, paragraph 6-10g.)

E-6. A 1-month (calendar month) extension to complete flight physicals must be granted prior to the expiration date of the current physical. (AR 40-501, paragraph 6-11i.)

Note. If the flying duty medical examination (FDME)/for duration of hospital stay (FDHS) cannot be performed prior to the end of the birth month, the aircrew member (aviator) may request and the flight surgeon may grant a 1-month (calendar month) extension (to the last day of the following month). An extension must be requested in the birth month prior to the end of the birth month. Any extensions requested and granted in the month after the birth month are not valid. The effective date of the extension is the day it was requested.

E-7. Crewmembers or ATC personnel performing aviation duties must have a current flight physical or extension. (AR 95-1, paragraph 2-1b; AR 40-501, paragraph 6-11i; AR 600-106, paragraph 2-7c[2]; AR 600-105, paragraph 6-1c[2].)
E-8. Report to New Duty Station (DA Form 4186). Crewmember must see the flight surgeon or aeromedical physician. Flight surgeon or aeromedical physician assistant must interview newly assigned aviation personnel and review their medical records before granting a medical clearance to fly. (AR 40-3, paragraph 3-5d[2].)

E-9. Nonoperational aviators must complete annual flight physicals. (AR 600-105, paragraph 3-1c; AR 40-501, paragraph 6-11c; FM 3-04.300, paragraph 6-2.)

E-10. DAC pilots, contract pilots, civilian nonrated crewmembers or noncrewmembers, contract nonrated crewmembers and noncrewmembers, civilian ATC personnel, and Wage Grade 11 (WG-11) personnel must maintain a valid Army FDME or Federal Aviation Administration (FAA) medical certificate. (AR 40-501, paragraphs 4-2b[3], 4-2b[4], 4-2d, 4-31a[1-3], 4-33a[1], [3].)

E-11. Flight surgeon/unit will track flight duty medical examinations from initiation through posted in the health record, with a final disposition from U.S. Army Aeromedical Activity (USAAMA). (AR 40-501, paragraph 6-10f.)

E-12. Aircrew member will adhere to the establish procedures whereby aircrew members are automatically grounded when treated in an emergency center or specialty clinic. (AR 40-3, paragraph 3-5d[3]; AR 40-8, paragraph 4-b; AR 40-501, 6-11b[5] thru [8].)

E-13. Aircrew members will immediately inform the flight surgeon when they have participated in activities or have received treatment that may result in flying restrictions, and these events will be documented on a (duties not to include flying [DNIF]) DA Form 4186. (AR 40-3, paragraph 3-5d[3]; AR 40-8, paragraph 4-b[1-6]; AR 40-501, paragraph 6-11b[1-8].)

E-14. Aircrew members must be medically clear by a flight surgeon or aeromedical physician assistant for further flight duty following temporary medical disqualification or after an aircraft mishap. (AR 40-3, paragraph 3-5d[4]; AR 40-501, paragraphs 6-11b[2,5,6,7, 8].)

E-15. Crewmembers must complete FDME within 90 days of redeployment if they received incomplete “deployment” FDMEs while deployed. (AR 40-501, paragraph 6-8d.)

E-16. Unit’s aeromedical training program will comply with the AR 95-1, paragraph 4-13, 8-1g; DA PAM 385-90, paragraph 1-4p; TC 3-04.93.

E-17. The unit commander must evaluate the missions of the unit to determine its special aeromedical training requirements. (TC 3-04.93, paragraph 1-11.)

E-18. Aircrew members who fly in pressurized aircraft or in aircraft operating above 10,000 feet with supplemental oxygen must receive hypobaric training. (TC 3-04.93, paragraph 1-3.)
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAR</td>
<td>after-action review</td>
</tr>
<tr>
<td>AASF</td>
<td>Army Aviation Support Facility</td>
</tr>
<tr>
<td>AATS</td>
<td>Army Aviation Training Site</td>
</tr>
<tr>
<td>ACT-E</td>
<td>aircrew coordination training-enhanced</td>
</tr>
<tr>
<td>ADA</td>
<td>air defense artillery</td>
</tr>
<tr>
<td>AGES</td>
<td>air-ground engagement system</td>
</tr>
<tr>
<td>AGL</td>
<td>above ground level</td>
</tr>
<tr>
<td>AGR</td>
<td>Army Guard Reserve</td>
</tr>
<tr>
<td>AH</td>
<td>attack helicopter</td>
</tr>
<tr>
<td>AIRF</td>
<td>aircrew information reading file</td>
</tr>
<tr>
<td>ALSE</td>
<td>aviation life support equipment</td>
</tr>
<tr>
<td>AMC</td>
<td>air mission commander</td>
</tr>
<tr>
<td>AMS</td>
<td>aviation mission survivability</td>
</tr>
<tr>
<td>APA</td>
<td>aviation physician assistant</td>
</tr>
<tr>
<td>APART</td>
<td>annual proficiency and readiness test</td>
</tr>
<tr>
<td>AR</td>
<td>Army regulation</td>
</tr>
<tr>
<td>ARFORGEN</td>
<td>Army Force Generation</td>
</tr>
<tr>
<td>ARNG</td>
<td>Army National Guard</td>
</tr>
<tr>
<td>ARNGUS</td>
<td>Army National Guard of the United States</td>
</tr>
<tr>
<td>ARTEP</td>
<td>Army training and evaluation program</td>
</tr>
<tr>
<td>ASE</td>
<td>aircraft survivability equipment</td>
</tr>
<tr>
<td>ATM</td>
<td>aircrew training manual</td>
</tr>
<tr>
<td>ATP</td>
<td>aircrew training program</td>
</tr>
<tr>
<td>ATS</td>
<td>air traffic services</td>
</tr>
<tr>
<td>ATX</td>
<td>aviation training exercise</td>
</tr>
<tr>
<td>AVCATT</td>
<td>Aviation Combined Arms Tactical Trainer</td>
</tr>
<tr>
<td>BCT</td>
<td>brigade combat team</td>
</tr>
<tr>
<td>C2</td>
<td>command and control</td>
</tr>
<tr>
<td>CAB</td>
<td>combat aviation brigade</td>
</tr>
<tr>
<td>CAFRS</td>
<td>Centralized Aviation Flight Records System</td>
</tr>
<tr>
<td>CALFEX</td>
<td>combined live fire exercise</td>
</tr>
<tr>
<td>CATS</td>
<td>Combined Arms Training Strategy</td>
</tr>
<tr>
<td>CBAT</td>
<td>computer-based aircraft survivability equipment training</td>
</tr>
<tr>
<td>CBRN</td>
<td>chemical, biological, radiological, and nuclear</td>
</tr>
<tr>
<td>CCMET</td>
<td>core competency mission essential task</td>
</tr>
<tr>
<td>CDR</td>
<td>commander</td>
</tr>
<tr>
<td>CE</td>
<td>crew chief</td>
</tr>
<tr>
<td>CH</td>
<td>cargo helicopter</td>
</tr>
</tbody>
</table>
CID combat identification
CMETL core mission essential task list
CPX command post exercise
CRM composite risk management
CSM command sergeant major
CTC Combat Training Center
CTG commander’s training guidance
CTL commander’s task list
DA Department of the Army
DAC Department of the Army civilian
DART downed aircraft recovery team
DNIF duties not to include flying
DOD Department of Defense
EAATS Eastern ARNG Aviation Training Site
EDI-PI Electronic Data Interchange-Personal Identifier
EO electro-optical
EW electronic warfare
FAA Federal Aviation Administration
FAC flight activity category
FARP forward arming and refueling point
FDHS for duration of hospital stay
FDME flying duty medical examination
FCP functional check pilot
FE flight engineer
FEB flight evaluation board
FHP flying-hour program
FI flight instructor
FLIP Flight Information Publication
FM field manual
FS flight surgeon
FSXXI Flight School Twenty-One
FTG flight training guide
FTS full-time support
FTX field training exercise
FY fiscal year
GMET general mission essential task
HH search and rescue/medical evacuation helicopter
HQDA Headquarters, Department of the Army
IATF individual aircrew training folder
IAW in accordance with
IE instrument examiner
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IERW</td>
<td>initial entry rotary wing</td>
</tr>
<tr>
<td>IFRF</td>
<td>individual flight records folder</td>
</tr>
<tr>
<td>IIMC</td>
<td>inadvertent instrument meteorological condition</td>
</tr>
<tr>
<td>IP</td>
<td>instructor pilot</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>JIIM</td>
<td>joint, interagency, intergovernmental, and multiagency</td>
</tr>
<tr>
<td>JP</td>
<td>joint publication</td>
</tr>
<tr>
<td>LAO</td>
<td>local area orientation</td>
</tr>
<tr>
<td>LOS</td>
<td>line of sight</td>
</tr>
<tr>
<td>L-V-C</td>
<td>live-virtual-constructive (training environment)</td>
</tr>
<tr>
<td>ME</td>
<td>maintenance examiner</td>
</tr>
<tr>
<td>MEDEVAC</td>
<td>medical evacuation</td>
</tr>
<tr>
<td>METL</td>
<td>mission essential task list</td>
</tr>
<tr>
<td>METT-TC</td>
<td>mission, enemy, terrain and weather, troops and support available, time available, and civil considerations</td>
</tr>
<tr>
<td>MILES</td>
<td>multiple integrated laser engagement system</td>
</tr>
<tr>
<td>MOPP</td>
<td>mission-oriented protective posture</td>
</tr>
<tr>
<td>MOS</td>
<td>military occupational specialty</td>
</tr>
<tr>
<td>MP</td>
<td>maintenance test pilot</td>
</tr>
<tr>
<td>MRC</td>
<td>Mobilized Reserve Component</td>
</tr>
<tr>
<td>MTOE</td>
<td>modification table of organization and equipment</td>
</tr>
<tr>
<td>MTP</td>
<td>mission training plan</td>
</tr>
<tr>
<td>NAVAID</td>
<td>navigational aids</td>
</tr>
<tr>
<td>NCM</td>
<td>nonrated crewmember</td>
</tr>
<tr>
<td>NCO</td>
<td>noncommissioned officer</td>
</tr>
<tr>
<td>NG</td>
<td>National Guard</td>
</tr>
<tr>
<td>NGB</td>
<td>National Guard Bureau</td>
</tr>
<tr>
<td>NOTAM</td>
<td>notice to airmen</td>
</tr>
<tr>
<td>NVD</td>
<td>night vision device</td>
</tr>
<tr>
<td>NVG</td>
<td>night vision goggle</td>
</tr>
<tr>
<td>NVS</td>
<td>night vision system</td>
</tr>
<tr>
<td>OH</td>
<td>observation helicopter</td>
</tr>
<tr>
<td>OR</td>
<td>operational readiness</td>
</tr>
<tr>
<td>PC</td>
<td>pilot in command</td>
</tr>
<tr>
<td>PCS</td>
<td>permanent change of station</td>
</tr>
<tr>
<td>PFE</td>
<td>proficiency flight evaluation</td>
</tr>
<tr>
<td>PID</td>
<td>personnel identifier</td>
</tr>
<tr>
<td>POI</td>
<td>program of instruction</td>
</tr>
<tr>
<td>PR</td>
<td>personnel recovery</td>
</tr>
<tr>
<td>QTB</td>
<td>quarterly training brief</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RC</td>
<td>Reserve Component</td>
</tr>
<tr>
<td>RCM</td>
<td>rated crewmember</td>
</tr>
<tr>
<td>RL</td>
<td>readiness level</td>
</tr>
<tr>
<td>ROCV</td>
<td>recognition of combat vehicle</td>
</tr>
<tr>
<td>ROE</td>
<td>rules of engagement</td>
</tr>
<tr>
<td>S-3</td>
<td>operations staff officer</td>
</tr>
<tr>
<td>SAAO</td>
<td>state Army aviation officer</td>
</tr>
<tr>
<td>SARVIP</td>
<td>survival armor recovery vest, insert, and packet</td>
</tr>
<tr>
<td>SERE</td>
<td>survival, evasion, resistance, and escape</td>
</tr>
<tr>
<td>SHP</td>
<td>simulator hour program</td>
</tr>
<tr>
<td>SI</td>
<td>standardization instructor</td>
</tr>
<tr>
<td>SOP</td>
<td>standing operating procedure</td>
</tr>
<tr>
<td>SP</td>
<td>standardization instructor pilot</td>
</tr>
<tr>
<td>SSN</td>
<td>social security number</td>
</tr>
<tr>
<td>STRAC</td>
<td>Standards in Training Commission</td>
</tr>
<tr>
<td>TACOPS</td>
<td>tactical operations</td>
</tr>
<tr>
<td>TACSOP</td>
<td>tactical standing operating procedure</td>
</tr>
<tr>
<td>TADSS</td>
<td>training aids, devices, simulators, and simulations</td>
</tr>
<tr>
<td>TASMG</td>
<td>Theater Aviation Sustainment Maintenance Group</td>
</tr>
<tr>
<td>TC</td>
<td>training circular</td>
</tr>
<tr>
<td>TDA</td>
<td>table of distribution and allowances</td>
</tr>
<tr>
<td>TDY</td>
<td>temporary duty</td>
</tr>
<tr>
<td>T&EO</td>
<td>training and evaluation outline</td>
</tr>
<tr>
<td>TOE</td>
<td>table of organization and equipment</td>
</tr>
<tr>
<td>TRADOC</td>
<td>Training and Doctrine Command</td>
</tr>
<tr>
<td>TRC</td>
<td>training readiness condition</td>
</tr>
<tr>
<td>TSP</td>
<td>training support plan</td>
</tr>
<tr>
<td>TTP</td>
<td>tactics, techniques, and procedures</td>
</tr>
<tr>
<td>UAS</td>
<td>unmanned aircraft system</td>
</tr>
<tr>
<td>UH</td>
<td>utility helicopter</td>
</tr>
<tr>
<td>USAACE</td>
<td>United States Army Aviation Center of Excellence</td>
</tr>
<tr>
<td>USAEUR</td>
<td>United States Army Europe</td>
</tr>
<tr>
<td>USAIC</td>
<td>United State Army Intelligence Center</td>
</tr>
<tr>
<td>USAR</td>
<td>United States Army Reserve</td>
</tr>
<tr>
<td>USARC</td>
<td>United States Army Reserve Command</td>
</tr>
<tr>
<td>USAAMA</td>
<td>United States Army Aeromedical Activity</td>
</tr>
<tr>
<td>USASAM</td>
<td>United State Army School of Aviation Medicine</td>
</tr>
<tr>
<td>USR</td>
<td>unit status report</td>
</tr>
<tr>
<td>UT</td>
<td>unit trainer</td>
</tr>
<tr>
<td>UTL</td>
<td>unit task list</td>
</tr>
<tr>
<td>VFR</td>
<td>visual flight rules</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>VMC</td>
<td>visual meteorological condition</td>
</tr>
<tr>
<td>WAATS</td>
<td>Western ARNG Aviation Training Site</td>
</tr>
<tr>
<td>WFX</td>
<td>warfighter exercise</td>
</tr>
<tr>
<td>WO</td>
<td>warrant officer</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
References

SOURCES USED

ARMY PUBLICATIONS

https://call2.army.mil/default.aspx (Restricted Digital Library)

ARMY REGULATIONS

AR 220-1. Unit Status Reporting. 19 December 2006.
AR 350-1. Army Training and Leader Development. 3 August 2007.
AR 350-3. Tactical Intelligence Readiness Training Program. 30 August 1995.

DEPARTMENT OF THE ARMY PAMPHLETS

FIELD MANUALS

FM 3-0. Operations. 27 February 2008.
References

FM 3-05.132. Army Special Operations Forces Chemical, Biological, Radiological, and Nuclear Operations. 31 August 2007.
FM 5-0. Army Planning and Orders Production. 20 January 2005.

JOINT PUBLICATIONS

NATIONAL GUARD REGULATIONS

NG Sup 1 to AR 95-1. Aviation: Flight Regulations. 22 August 2008.
(http://www.ngbpdc.ngb.army.mil/publications.htm)

NAVY PUBLICATIONS

TECHNICAL BULLETINS

TB MED 524. Occupational and Environmental Health: Control of Hazards to Health from Laser Radiation. 31 January 2006.

TRAINING CIRCULAR

TC 3-17. (O) Combat Identification (CID) Training Integration. 6 November 2007.

TECHNICAL MANUAL

TRADOC REGULATION

DOCUMENTS NEEDED

DA Form 2028. Recommended Changes to Publications and Blank Forms.
DA Form 2408-12. Army Aviator’s Flight Record.
DA Form 3513. Individual Flight Records Folder, United States Army.
DA Form 4186. Medical Recommendation for Flying Duty.
DA Form 4507-R. Crew Member Grade Slip.
DA Form 4507-1-R. Maneuver/Procedure Grade Slip.
DA Form 4507-2-R. Continuation Comment Slip.
DA Form 4856. Developmental Counseling Form.
DA Form 5484. Mission Schedule/Brief.
DA Form 7120-R. Commander’s Task List.
DA Form 7120-1-R. Crew Member Task Performance and Evaluation Requirements.
DA Form 7120-2-R. Crew Member Task Performance and Evaluation Requirements Continuation Sheet.
DA Form 7120-3-R. Crew Member Task Performance and Evaluation Requirements Remarks and Certification.
DA Form 7122-R. Crew Member Training Record.
DA Form 7525. UAS Mission Schedule/Brief.
DA Forms are available on the APD web site (www.apd.army.mil).

READINGS RECOMMENDED

FM 3-04.120. Air Traffic Services Operations. 16 February 2007.
Index

A
above ground level (AGL), B-2, B-3
additional tasks, 3-2, 3-3, 3-4, 3-5, 3-6, 3-10, 4-2, 4-8, 7-6, 7-10, A-2, A-24, B-1
aeromedical training, 4-17, E-2
after-action review (AAR), 1-15, 1-19, 4-14, 8-5
air defense artillery (ADA), 7-12, 8-5
air mission commander (AMC), 1-10, 1-11, 4-16, 6-3, 7-10, 7-13, C-2, C-13
air traffic services (ATS), 8-3, E-1
aircraft identification convention, 2-1
aircraft survivability equipment (ASE), 4-12, 8-5, 8-7, C-9, C-14
aircrew coordination training-enhanced (ACT-E), v, 1-8, 3-7, 3-11, 4-1, 4-7, 4-9, 4-10, 4-11, 8-7, A-14, C-4
aircrew information reading file (AIRF), 4-9, C-2, C-7
aircrew training program (ATP), iv, v, vii, viii, 1-6, 1-9, 1-10, 1-11, 1-12, 1-13, 1-16, 1-19, 3-2, 3-3, 3-4, 3-6, 3-7, 3-8, 3-9, 3-10, 3-12, 3-13, 4-1, 4-4, 4-5, 4-6, 4-7, 4-9, 4-11, 4-12, 4-13, 4-14, 4-15, 4-16, 5-1, 5-4, 6-1, 6-7, 7-6, 7-7, 7-8, 7-9, 7-10, 7-12, 7-13, 8-1, 8-3, 8-4, 8-7, A-1, A-2, A-3, A-5, A-7, A-8, A-11, A-13, A-14, A-15, C-1, C-3, C-4, C-6, C-7, C-8, C-11, C-17, D-1, E-1
air-ground engagement system (AGES), 8-5
annual proficiency and readiness test (APART), iv, 3-6, 3-7, 3-9, 3-11, 3-12, 4-1, 4-3, 4-6, 4-7, 4-10, 4-11, 4-12, 4-16, 5-2, 5-3, 5-4, A-11, A-14
area of concentration (AOC), 3-6
Army Aviation Flight Activity (AAFA), 1-9
Army Aviation Operating Facility (AAOF), 1-9
Army Aviation Support Facility (AASF), 1-9, 1-10
Army Aviation Training Site (AATS), 4-5
Army Force Generation (ARFORGEN), 1-4, 1-19, 7-1, 7-3
Army training and evaluation program (ARTEP), 1-5, 3-2, 8-4, 10-1, A-14
aviation battle-focused training, vii, 1-19, 6-1, 7-11, 7-12
Aviation Classification and Repair Activity Depot (AVCRAD), 1-9
aviation combined arms tactical trainer (AVCATT), 1-15, 1-19, 7-10, 8-5
aviation life support equipment (ALSE), 4-9, 4-16, C-2, C-16
aviation mission survivability (AMS), 1-11, 1-16, 4-7, 4-9, 4-12, 4-13
aviation physician assistant (APA), iii, 1-12
Aviation Senior Leader Conference (ASLC), 7-13
aviation training exercise (ATX), 7-1, 8-5
aviator night vision imaging system (ANVIS), 2-1

B
battle rostering, 3-11, 7-5, 8-5, 8-6
branch code, 3-6
brigade combat team (BCT), 7-1, 7-4
brigade combat team (BCT), 7-1, 7-4
Centralized Aviation Flight Records System (CAFRS), A-5
chemical, biological, radiological, and nuclear (CBRN), v, 1-14, 3-8, 4-7, 4-9, 4-15, 8-7, A-7, A-8, C-2, C-16
C-level, 8-1, 10-1
collective tasks, 1-4, 1-8, 3-3, 7-6, 7-9, 8-2, 8-3, 8-5, 8-7, 9-3, 9-4
collective training, vii, viii, 1-11, 1-14, 1-15, 1-16, 1-19, 3-13, 4-14, 5-3, 7-1, 7-4, 7-6, 7-8, 7-10, 7-11, 7-12, 8-2, 8-3, 8-5, 8-6, 8-7, 10-2
combat aviation brigade (CAB), 1-4, 1-6, 3-1, 3-3
combat identification (CID), 4-7, 4-9, 4-13, C-2, C-15
Combat Training Center (CTC), 1-5, 7-10, 8-3, 8-4, 9-1, 9-3
combined arms training strategy (CATS), vii, 1-7, 1-14, 1-15, 1-19, 3-1, 3-2, 3-4, 3-11, 7-4, 7-5, 7-8, 7-10, 8-2, 8-3, 8-4, 9-1, 9-4, 10-1
combined live fire exercise (CALFLEX), 8-6
combat and control (C2), 1-2, 7-1, 8-3, 8-6, 8-7, 10-4
combat post exercise (CPX), 8-3, 10-1
commander evaluation, iv, 3-1, 3-6, 3-9, 8-1
commander training, 1-14
commander's task list (CTL), 1-10
commander's training guidance (CTG), 7-10
commander's task list (CTL), 3-2, 3-3, 3-4, 3-5, 3-7, 3-8, 3-9, 3-10, 3-13, 4-1, 4-2, 4-6, 4-9, 4-13, 4-16, 5-2, 5-4, 8-4, A-1, A-2, A-3, A-7, A-11, B-1
composite risk management (CRM), vii, 1-8, 6-1, 6-2, 6-3, 6-4, 6-5, 6-6, 6-7, 6-8
computer-based aircraft survivability equipment training (CBAT), v, 4-12, 9-4, C-2, C-9
core competency mission essential task (CCMET), 1-4
core mission essential task list (CMETL), 1-4
crew chief (CE), 3-10, 4-6
crew training, 1-13, 7-6, 7-11, 7-12, 7-13, 8-2, 8-3, 9-3
crewmember training, 1-9, 3-4, 10-4, C-16
deconfliction, 4-12
Division Commander Course (DCC), 7-13
downed aircraft recovery team (DART), 1-15, C-14
eastern ARNG aviation training site (EAATS), 1-9, 4-8
electronic warfare (EW), 4-12, 8-7
electro-optical (EO), 4-12
environmental training, 3-3, 8-4, 8-7, A-4, C-12
evaluation, v, 3-8, 4-2, 4-5, 5-1, 7-9, 7-10, 8-2, 8-3, 8-5, A-7, A-8, A-14, A-15, A-22, C-4, C-16, E-1
field training exercise (FTX), 1-5, 7-10, 8-3, 9-4
fixed-wing ARNG aviation training site (FWAATS), 1-9
flight activity category (FAC), iii, iv, v, 3-1, 3-5, 3-9, 4-1, 4-2, 4-3, 4-4, 4-7, 4-11, 4-14, 4-15, 9-1, 9-2, 10-3, A-5, A-8, A-11, A-14, C-4
flight engineer (FE), 3-10, 4-6
flight evaluation, 1-17, 1-18, 4-5, 4-6, 4-7, 5-2, 5-3, 5-4, A-14
flight evaluation board (FEB), 3-10, 3-12, A-14
flight information publication (FLIP), 4-9
flight instructor (FI), 1-9, 1-11, 3-7, 3-8, 3-9, 3-10, 4-5, 4-6, 4-8, 4-11, 5-1, 5-2, 5-3, 5-4, 7-6
flight medic, 4-6
Flight School Twenty-One (FSXXI), iv, 3-7
flight surgeon (FS), iii, 1-12, 5-3
flight training guide (FTG), 3-5, 3-10
flying-hour program (FHP), 1-7, 1-9, 4-3, 7-8, 9-1, 9-3, 9-4
flying-hour requirement, 3-5, 4-3, 4-9, 9-2
force protection, 4-13, 4-15, 10-3
forward arming and refueling point (FARP), 6-6, C-2
forward looking infrared radar (FLIR), B-4
full-time support (FTS), 1-9, 1-10, A-1
functional area (FA), 3-6
functional check pilot (FCP), v, 4-2, 4-5, 4-7, 5-1, 5-2, A-7
functional test pilot evaluator (FCPE), v
general mission essential task (GMET), 1-4
gunnery, iii, 1-6, 1-8, 1-13, 1-19, 3-9, 3-11, 4-10, 4-14, 4-15, 7-12, 8-5, 8-6, 8-7, 10-3, 10-4, A-14, C-11
hands-on performance, 3-11, 3-12, 5-3, 5-4, A-15
hazardous communication (HAZCOM), C-2
hazardous material (HAZMAT), C-2
high intensity radio traffic area (HRTA), 4-10
High-Altitude ARNG Aviation Training Site (HAATS), 1-9
hypobaric training, 4-17, E-2
inadvertent instrument meteorological condition (IIMC), 6-4, C-15
individual aircrew training folder (IATF), 1-17, 1-18, 3-6, 3-7, 3-12, 3-13, 3-14, 4-16, 7-13, A-1, A-2, A-15, A-22, C-4
individual flight records folder (IFRF), 3-7, E-1
individual training, 1-16, 7-6, 7-13, 8-2
infrared (IR), 4-12
initial entry rotary wing (IERW), iv, 3-7
instructor pilot (IP), v, 1-9, 1-11, 3-8, 4-5, 4-8, 4-11, 5-1, 7-6, 8-2, C-4
instrument evaluation, iii, v, 3-7, 5-2, 5-4
instrument examiner (IE), 1-9, 3-8, 3-9, 3-10, 4-5, 4-11, 5-2, 5-4
instrument flight rule (IFR), 4-9
instrument meteorological condition (IMC), 5-2
instrument recovery procedure, 4-9
integration, vii, 1-5, 1-6, 1-8, 3-3, 3-9, 4-15, 8-3, A-5
interactive multimedia, 1-8
Joint Army Navy Standard (JANUS), 8-5
joint combat identification (JCID), 4-13
joint, interagency, intergovernmental, and multinational (JIIM), 1-1, 1-3, 1-14, 7-4, 7-5
landing zone (LZ), 4-10
Limited Army Aviation Support Facility (LAASF), 1-9
line of sight (LOS), B-4
live-virtual-constructive (L-V-C), 1-19, 1-20
local area orientation (LAO), 3-7, 4-9, A-14
<table>
<thead>
<tr>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>maintenance evaluation, 5-4</td>
</tr>
<tr>
<td>maintenance examiner (ME), v, 1-9, 1-12, 3-8, 3-10, 3-11, 3-13, 4-2, 4-5, 4-7, 5-1, 5-2, 5-4, A-7</td>
</tr>
<tr>
<td>maintenance test pilot (MP), 1-12, 1-18, 3-10, 3-11, 3-13, 4-2, 4-5, 4-7, 4-14, 5-1, 5-2, A-7</td>
</tr>
<tr>
<td>maintenance training, 7-5</td>
</tr>
<tr>
<td>medical evacuation (MEDEVAC), vi, C-14</td>
</tr>
<tr>
<td>medical evaluation, 5-3</td>
</tr>
<tr>
<td>medical officer (MO), 4-6</td>
</tr>
<tr>
<td>medical treatment facility (MTF), E-1</td>
</tr>
<tr>
<td>military occupational specialty (MOS), 3-6, 4-5, 4-6</td>
</tr>
<tr>
<td>mission essential task list (METL), iii, viii, 1-4, 1-6, 1-13, 1-14, 1-16, 1-19, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-10, 3-11, 4-1, 4-2, 4-6, 4-15, 6-9, 7-4, 7-5, 7-6, 7-7, 7-8, 7-9, 7-10, 7-12, 8-1, 8-2, 8-3, 8-4, 8-6, 8-7, 9-1, 9-2, 9-4, 10-1, 10-2, 10-3, B-1, C-4, C-9</td>
</tr>
<tr>
<td>mission training plan (MTP), 3-2, 7-8, 7-9, 8-2, 8-4, 8-6, 10-1</td>
</tr>
<tr>
<td>mission, enemy, terrain and weather, troops and support available, time available, and civil considerations (METT-TC), 6-4</td>
</tr>
<tr>
<td>mission-oriented protective posture (MOPP), 4-15, A-14</td>
</tr>
<tr>
<td>mobilized reserve component (MRC), 1-17</td>
</tr>
<tr>
<td>modified table of organization and equipment (MTOE), iii, 3-5, 3-6, 4-13, 7-8, A-5, C-4</td>
</tr>
<tr>
<td>multiple integrated laser engagement system (MILES), 8-5</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>nap-of-the-earth (NOE), 7-12</td>
</tr>
<tr>
<td>National Guard Bureau (NGB), 1-9</td>
</tr>
<tr>
<td>navigational aid (NAVAID), 4-9, 4-10</td>
</tr>
<tr>
<td>night vision device (NVD), iii, 2-1, 3-3, 3-8, 5-1, 5-3, 6-6, 8-7, A-14, B-3</td>
</tr>
<tr>
<td>night vision goggle (NVG), iii, iv, v, 2-1, 3-8, 4-4, 4-7, 4-8, 4-10, 5-1, 5-2, 5-4, 6-9, 10-3, A-3, A-5, A-8, A-24, B-3, C-2, C-4</td>
</tr>
<tr>
<td>night vision system (NVS), iii, 2-1, 4-10, 10-3, A-5, A-8, B-3, C-2</td>
</tr>
<tr>
<td>non-mobilized reserve component (NMRC), 1-17, 1-18</td>
</tr>
<tr>
<td>nonoperational, iv</td>
</tr>
<tr>
<td>non-rated crewmember (NCM), iii, v, 1-12, 1-13, 2-2, 3-5, 3-8, 3-10, 3-12, 4-2, 4-6, 4-8, 4-9, 4-11, 4-12, 4-16, 5-1, 5-3, 5-4, 7-6, A-5, A-11</td>
</tr>
<tr>
<td>notice to airmen (NOTAM), 4-9</td>
</tr>
<tr>
<td>operating tempo (OPTEMPO), 10-4</td>
</tr>
<tr>
<td>operational, iv</td>
</tr>
<tr>
<td>operational readiness (OR), 1-5</td>
</tr>
<tr>
<td>operations order (OPORD), 7-10</td>
</tr>
<tr>
<td>operations plan (OPLAN), 7-10</td>
</tr>
<tr>
<td>operations staff officer (S-3), viii, 1-6, 1-10, 1-14, 7-8, 7-10</td>
</tr>
<tr>
<td>out of ground effect (OGE), B-3</td>
</tr>
<tr>
<td>personnel identifier (PID), A-5, A-13, A-22</td>
</tr>
<tr>
<td>personnel recovery (PR), v, 4-13</td>
</tr>
<tr>
<td>personnel tempo (PERSTEMPO), 7-1</td>
</tr>
<tr>
<td>petroleum, oils, and lubricants (POL), 4-10</td>
</tr>
<tr>
<td>pilot in command (PC), iii, vii, 1-10, 1-11, 1-12, 1-13, 1-16, 1-17, 1-18, 3-3, 3-10, 3-14, 4-8, 5-2, 6-3, 6-4, 6-6, 7-6, 7-12, 7-13, 8-6, A-13, A-14, A-15, A-22, C-1, C-8</td>
</tr>
<tr>
<td>pilot’s night vision system (PNVS), 4-9</td>
</tr>
<tr>
<td>Pre-Command Course (PCC), 7-13</td>
</tr>
<tr>
<td>problem-parts-people-plant-tools-time (P4T2), 7-6</td>
</tr>
<tr>
<td>proficiency flight evaluation (PFE), iv, 3-6, 3-7</td>
</tr>
<tr>
<td>program of instruction (POI), iv, 1-9, 3-5, 3-10, 3-11, 4-4, 4-5, 4-6, 4-7, 4-8, 5-4</td>
</tr>
<tr>
<td>quarterly training brief (QT B), 1-5, 1-7, 1-14, 1-19, 7-6, 7-7, 7-10, 10-2</td>
</tr>
<tr>
<td>rated crewmember (RCM), v, vii, 3-6, 3-7, 3-9, 3-12, 4-1, 4-2, 4-3, 4-5, 4-7, 4-8, 4-11, 4-12, 4-14, 5-1, 5-2, 5-3, 5-4, 7-6, A-11</td>
</tr>
<tr>
<td>readiness level (RL), iv, v, 1-16, 1-17, 1-19, 3-1, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, 3-11, 3-13, 4-2, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8, 4-10, 4-11, 4-14, 5-3, 5-4, 7-12, 7-13, 8-2, 9-1, 9-2, 9-3, 10-3, 10-4, A-2, A-3, A-5, A-6, A-7, A-11, A-13, A-15, A-24, B-1, C-4, C-7</td>
</tr>
<tr>
<td>recognition of combat vehicle (ROCV), 4-9, 4-13, C-2</td>
</tr>
<tr>
<td>recognition of combat vehicles (ROCV), 4-13</td>
</tr>
<tr>
<td>resourcing, 1-5, 1-7, 1-8, 1-19, 7-5, 7-7, 7-8, 10-4</td>
</tr>
<tr>
<td>risk assessment, 3-13, 6-7, 6-8, 6-9</td>
</tr>
<tr>
<td>rules of engagement (ROE), 1-14</td>
</tr>
<tr>
<td>simulator hour program (SHP), iii, 1-7, 1-14, 7-8</td>
</tr>
<tr>
<td>situation training exercise (STX), 3-13</td>
</tr>
<tr>
<td>situational training exercise (STX), 4-16, 7-11, 8-3, 8-4, 8-6, A-7, C-4</td>
</tr>
<tr>
<td>Skill qualification identifier (SQI), 1-18</td>
</tr>
<tr>
<td>Soldier training publication (STP), 1-8</td>
</tr>
<tr>
<td>Special purpose insertion/extraction system (SPIES), C-2</td>
</tr>
<tr>
<td>Standardization instructor (SI), iii, 1-9, 1-11, 3-8, 4-8, 4-11, 5-1</td>
</tr>
<tr>
<td>Standardization instructor pilot (SP), v, 1-9, 1-11, 3-8, 4-5, 4-8, 4-11, 5-1, 8-2</td>
</tr>
<tr>
<td>Standards in Training Commission (STRAC), 1-14, 8-6</td>
</tr>
<tr>
<td>Standing operating procedure (SOP), vi, 3-3, 3-4, 3-7, 3-11, 4-8, 4-9, 4-11, 4-12, 4-13, 4-15, 4-16, 5-3, 6-3, 6-4, 6-6, 8-2, A-24, C-1, C-2, C-3, C-6, C-7, C-8, C-11</td>
</tr>
<tr>
<td>State Army aviation officer (SAAO), 1-9</td>
</tr>
<tr>
<td>Survival, evasion, resistance, and escape (SERE), 4-13</td>
</tr>
<tr>
<td>Symbol usage, vii, 2-1</td>
</tr>
<tr>
<td>Table of organization and equipment (TOE), 1-4, 3-5, 3-6, 3-10, 4-1, 4-7, 4-13, 4-15, 1-11, 1-12, 1-18, 7-6, 7-13</td>
</tr>
<tr>
<td>Tactical operations (TACOPS), 1-11, 1-12, 1-18, 7-6, 7-13</td>
</tr>
<tr>
<td>Tactical terrain visualization system (TTVS), 1-15</td>
</tr>
<tr>
<td>Tactics, techniques, and procedures (TTP), 1-11, 4-12, 4-14, 8-5</td>
</tr>
<tr>
<td>Target acquisition and designation system (TADS), 2-1</td>
</tr>
<tr>
<td>Theater Aviation Sustainment Maintenance Group (TASMG), 1-9</td>
</tr>
<tr>
<td>Training aids, devices, simulators, and simulations (TADSS), 1-7, 1-19, 7-10, 9-1, 9-4, 10-1, 10-3</td>
</tr>
<tr>
<td>Training and evaluation outline (T&EO), 7-9, 7-10, 8-4</td>
</tr>
<tr>
<td>Training event execution review (TEER), 10-2</td>
</tr>
<tr>
<td>Training level (T-level), 1-14, 8-1, 10-2, 10-3</td>
</tr>
<tr>
<td>Training readiness condition (TRC), C-12</td>
</tr>
<tr>
<td>Training support plan (TSP), 4-8, 8-7, 9-4</td>
</tr>
<tr>
<td>Unit status report (USR), 1-14, 4-15, 9-4, 10-1, 10-2, 10-3</td>
</tr>
<tr>
<td>Unit task list (UTL), 1-8, 1-15, 3-2, 3-4, 7-10</td>
</tr>
<tr>
<td>Unit trainer (UT), 1-9, 1-11, 1-12, 3-10, 4-8</td>
</tr>
<tr>
<td>Unit training, 1-5, 1-7, 1-8, 1-12, 1-15, 1-20, 7-1, 7-4, 7-6, 7-10, 8-1, 8-2, 8-4, 8-5, 9-1, 9-2, 10-2, C-7</td>
</tr>
<tr>
<td>Unmanned aircraft system (UAS), 4-11, 8-3</td>
</tr>
<tr>
<td>Visual flight rules (VFR), 4-9</td>
</tr>
<tr>
<td>Visual meteorological conditions (VMC), B-2</td>
</tr>
<tr>
<td>Warfighter exercise (WFX), 7-1</td>
</tr>
<tr>
<td>Warning order (WARNO), C-14</td>
</tr>
<tr>
<td>Western ARNG Aviation Training Site (WAATS), 1-9, 4-8</td>
</tr>
<tr>
<td>Word distinction, vii, 2-1</td>
</tr>
</tbody>
</table>
CREW MEMBER GRADE SLIP

For use of this form see TC 3-04.11; the proponent agency is TRADOC.

<table>
<thead>
<tr>
<th>Name:</th>
<th>Rank:</th>
<th>PID:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Purpose:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aircraft Type:</th>
<th>Date Started:</th>
<th>Must Complete By:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flight Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Today</td>
</tr>
<tr>
<td>Cumulative Time</td>
</tr>
<tr>
<td>Day Flight--Today</td>
</tr>
<tr>
<td>Day Flight--Cumulative</td>
</tr>
<tr>
<td>Flight--Today</td>
</tr>
<tr>
<td>Flight--Cumulative</td>
</tr>
<tr>
<td>Flight--Today</td>
</tr>
<tr>
<td>Flight--Cumulative</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duty Position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overall Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crew Member Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trainer or Evaluator Name, Rank, and Duty Position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
MANEUVER/PROCEDURE GRADE SLIP

For use of this form see TC 3-04.11; the proponent agency is TRADOC.

<table>
<thead>
<tr>
<th>Trainee's/Examinee's Name:</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SELECT

<table>
<thead>
<tr>
<th>Page No.</th>
<th>No. Pages</th>
<th>MANEUVER/PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DA FORM 4507-1-R, DEC 2009

PREVIOUS EDITIONS ARE OBSOLETE.
CONTINUATION COMMENT SLIP

For use of this form see TC 3-04.11; the proponent agency is TRADOC.

Examinee's/Trainee's Name: ________________________________

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Comments</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART I. BIOGRAPHICAL

Name:
Rank:
PID:
Birth Month:
FAC:
Aircraft Type:
- Primary
- Additional
- Alternate

Duty Title:

Commander:
Signature:
Date:
Crew Member’s Signature:
Date:

PART II. AUTHORIZED FLIGHT DUTIES/STATIONS

<table>
<thead>
<tr>
<th>PI</th>
<th>PC</th>
<th>UT</th>
<th>IP</th>
<th>SP</th>
<th>IE</th>
<th>MP</th>
<th>FCP</th>
<th>ME</th>
<th>XP</th>
<th>CE</th>
<th>FE</th>
<th>FI</th>
<th>SI</th>
<th>AO</th>
<th>MO</th>
<th>OR</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Right/Back Seat
Left/Front Seat
Other Station
NVG
NVS

PART III. FLYING-HOUR REQUIREMENTS

<table>
<thead>
<tr>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual</td>
</tr>
<tr>
<td>Total Aircraft Hours</td>
</tr>
<tr>
<td>Total Simulator Hours</td>
</tr>
<tr>
<td>Night Unaided Hours</td>
</tr>
<tr>
<td>NVG Hours</td>
</tr>
<tr>
<td>Hood/Weather Hours</td>
</tr>
<tr>
<td>Other Hours (Specify)</td>
</tr>
</tbody>
</table>

PART IV. EVALUATION REQUIREMENTS

<table>
<thead>
<tr>
<th>Designated Period (AC/USAR) or Qtr (ARNG)</th>
<th>Remarks/Date Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardization Flight Evaluation</td>
<td></td>
</tr>
<tr>
<td>Instrument Flight Evaluation</td>
<td></td>
</tr>
<tr>
<td>Operator’s Manual Written Examination</td>
<td></td>
</tr>
<tr>
<td>NVG Flight Evaluation</td>
<td></td>
</tr>
<tr>
<td>Maintenance Test Flight Evaluation</td>
<td></td>
</tr>
<tr>
<td>Other (Specify)</td>
<td></td>
</tr>
</tbody>
</table>

PART V. ENCLOSURES

1. DA Form 7120-1-R (Crew Member Task Performance and Evaluation Requirements)
2. DA Form 7120-2-R (Crew Member Task Performance and Evaluation Requirements Continuation Sheet)
3. DA Form 7120-3-R (Crew Member Task Performance and Evaluation Requirements Remarks and Certification)
4. Other (Specify)
5. Other (Specify)

PART VI. CERTIFICATION

This form, its enclosure(s), and the aircrew training manual establish your Aircrew Training Program requirements.

Commander:
Signature:
Date:

I certify that I have read and understand my ATP requirements contained on this form, its enclosure(s), and the aircrew training manual.

Crew Member’s Signature:
Date:
CREW MEMBER TASK PERFORMANCE AND EVALUATION REQUIREMENTS
For use of this form see TC 3-04.11; the proponent agency is TRADOC.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Day</th>
<th>Night</th>
<th>NVG</th>
<th>NVS</th>
<th>CBRN</th>
<th>Sim</th>
<th>TECH</th>
<th>Remarks</th>
</tr>
</thead>
</table>

CBRN Requirements: □ Yes □ No

PREVIOUS EDITIONS ARE OBSOLETE.
<table>
<thead>
<tr>
<th>Tasks (continued)</th>
<th>Day</th>
<th>Night</th>
<th>NVG</th>
<th>NVS</th>
<th>CBRN</th>
<th>Sim</th>
<th>TECH</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DA FORM 7120-2-R, DEC 2009

PREVIOUS EDITIONS ARE OBSOLETE.
CREW MEMBER TASK PERFORMANCE AND EVALUATION REQUIREMENTS
REMARKS AND CERTIFICATION

For use of this form see TC 3-04.11, the proponent agency is TRADOC.

REMARKS:

CERTIFICATION:

I have/have not completed my ATP flying-hour, task performance, and evaluation requirements.

Crew Member's Signature: ___________________________ Date: ____________

DA FORM 7120-3-R, DEC 2009 PREVIOUS EDITIONS ARE OBSOLETE.
CREW MEMBER TRAINING RECORD

For use of this form see TC 3-04.11; the proponent agency is TRADOC.

<table>
<thead>
<tr>
<th>Date</th>
<th>A/C</th>
<th>Event</th>
<th>Duty</th>
<th>D</th>
<th>N</th>
<th>NG</th>
<th>NS</th>
<th>W</th>
<th>H</th>
<th>Sim</th>
<th>Seat</th>
<th>Recorded By</th>
<th>GR</th>
<th>CM</th>
<th>Init</th>
<th>Rmk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

DA FORM 7122-R, DEC 2009

PREVIOUS EDITIONS ARE OBSOLETE.
This page intentionally left blank.
This page intentionally left blank.
By order of the Secretary of the Army:

GEORGE W. CASEY, JR.
General, United States Army
Chief of Staff

Official:

JOYCE E. MORROW
Administrative Assistant to the Secretary of the Army
0930209

DISTRIBUTION:
Active Army, Army National Guard, and United States Army Reserve: To be distributed in accordance with the initial distribution number (IDN) 113887, requirements for TC 3-04.11.